RFPORT DOCUMENTATION PAGE

Form Approved
OPM No. 0704-0188
g SXSTNG data sources m and nang the data

U DOY T95DONSA. INCiuGIng the time for G Netr

burden estimate of any other aspect of this collection of informatinn, NCkX~ J SUGEENLION for reALCING this BUrKeN. 10 Washngon
D—A240 5 1 1 stterson Davis Highway. Sutte 1204, Arlington, VA 22202-4302. and 1o the Office of Information and Reguiakry Aftars, Ottice of

lesszl

L T — e

Final: 30 Jul 1991 to 01 Jun 1993

(4 TITLE AND SUBTITLE

Ada Compiler Validation Summary Report:U.S. NAVY, Ada/M, Version 4.0
(/OPTIMIZE), VAX 11/785, running VAX/VMS Version 5.3 (Host) to AN/AYK-14
(Bare Board)(Target), 91062651.11179

[6 AUTHOR(S)

National Institute of Standards and Technology
Gaithersburg, MD

USA

5. FUNDING NUMBERS

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ,\
National Institute of Standards and Technology /"
National Computer Systems Laboratory
Bidg. 255, Rm A266

Gaithersburg, MD 20899 USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

NISTQ0USN510_12_1.11

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Ada Joint Program Ctlice

United States Department of Defense
Pentagon, RM 3E114

Washington, D.C. 20301-3081

10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

11 SUPPLEMENTARY NOTES

73 DISTAIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

AM,AYK-14 (Bare Board)(Target), ACVC 1.11

DTIC

. -y T .
TETE T

" SEP 191991

.c
s

U.S. NAVY, Ada/M, Version 4.0 (/OPTIMIZE), Gaithershurg, MD, VAX 11/785, running VAX/VMS Version 5.3 (Host) to

91-11067
HII!\I AN

14 SUBJECT TERMS 15. NUMBER OF PAGES
Ada programming language, Ada Ccmpiler Val. Summary Report, Ada Compiler Val. - _—
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE COOE
77 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20, UMITATION OF ABSTRACT
OF REPORT OF ABSTRACT
lL'Nfll ASSIFIFD UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550

91 . 10 18

~ Standard Form 298, (Rev. 2-89)
Prescribed by ANS! Std. 239-128

AVF Control Number: NISTS0USN510_ 12 1.11
DA_~ COMPLETED

BEFORE ON-SITE: 1991-04-05

AFTER ON-SITE: 1991-06-26

REVISIONS: 1991-07-30

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 910626S1.11179
U.S. NAVY
Ada/M, Version 4.0 (/OPTIMIZE)
VAX 11/785 => AN/AYK-14 (Rare Board)

Prepared By:

Software Standards Validation Group
National Computer Systems Laboratory
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, Maryland 20899

Accesion For \
NTIS CRA&)
DTIC TAB 0
Uiannounced]
Justitication
BY
Dixt ibUﬁOn"

P g oy e e

Aveaiiability Codes
- . —— ————]
i Avail o cior

=oucial

Dist

A-| |
| VN N A _

AVF Control Number: NIST90USN510_1i2 1.11

Certificate Information

The following Ada implementation was tested and determined to pass
ACVC 1.11. Testing was completed on 1991-06-26.

Compiler Name and Version: Ada/M, Version 4.0 (/OPTIMIZE)

Host Computer System: VAX 11/785, running VAX/VMS Version
5.3
Target Computer System: AN/AYK-14 (Bare Board)

A more detailed description of this Ada implementation is found in
section 3.1 of this report.

As a result of this validation effort, Validation Certificate
910626S1.1117y is awarded to U.S. NAVY. This certificate expires
on 01 March 1993.

This report has been reviewed and is approved.

Ada’Vvalida cility
Dr. David K. Mr. L. Arybl Johnson
Chief, Information Systems Manager, ware Standards
Engineering Division (ISED) . Validation Group

Computer Systems Laboratory (CLS)
National Institute of Standards and Technology
Building 225, Room A266
Gaithersburg, MD 20899

7?;%;%>47l?52”
Organization /o Bda Joint Program Office

Dr. John Solomond
Engineering Division Director

Institute for Defense Analyses Department of Defense
Alexandria VA 22311 Washington DC 20301

DECLARATION OF CONFORMANCE
The following declaration of conformance was supplied by the
customer.

DECLARATION OF CONFORMANCE

Customer: U.S. NAVY

Certificate Awardee: U.S. NAVY

Ada Validation Facility: National Institute of Standards and
Technology
Computer Systems Laboratory (CSL)
Software Validation Group
Buillding 225, Room A266
Gaithersburg, Maryland 20899

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: Ada/M, Version 4.0 (/OPTIMIZE)

Host Computer System: VAX 11/785, running VAX/VMS Version
5.3
Target Computer System: AN/AYK~-14 (Bare Board)
Declaration:

I the undersigned, declare that I have no knowledge of deliberate
deviations from the Ada Language Standard ANSI/MIL-STD-1815A 1ISO
8652-1987 in the implementation listed above.

, I ‘ o ~\ _ ,"
Customer Signature Date
Company U.S. Navy
Title

Lo - ‘ ,;\ . :“’l“.“/
Certificate Awardee Siagnature Date

Company U.S. Navy
Title

TABLE OF CONTENTS

CHAPTER 1 . . « + « ¢« o « o « &
INTRODUCTION

1.1 USE OF THIS VALIDATICN

1.2 REFERENCES . . .
1.3 ACVC TEST CLASSES
1.4

CHAPTER 2 . .« +« « « v o o « o &
IMPLEMENTATION DEPENDENCIES
2.1 WITHDRAWN TESTS

2.2 INAPPLICABLE TESTS
2.3 TEST MODIFICATIONS

CHAPTER 3 . . « « « « « « o « .
PROCESSING INFORMATION . .

3.1 TESTING ENVIRONMENT
3.2 SUMMARY OF TEST RESULTS

3.3 TEST EXECUTION .

APPENDIX A« « « « + -
MACRO PARAMETERS

APPENDIX B « « +« «
COMPILATION SYSTEM OPTIONS
LINKER OPTIONS« . .

APPENDIX C e .

APPENDIX F OF THE Ada STANDARD

DEFINITION OF TERMS

-

.

- . - .

REPORT

el I S S Sy
Coror o
W R

[NENENE NN
[} 1
W s b

W W wwww
1
(NIRRT

?:D
-

U’?’m
(N

?(3
-

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the
Ada Validation Procedures [Pro90)] against the Ada Standard [Ada83)
using the current Ada Compiler Validation Capability (ACVC). Tkis
Validation Summary Report (VSR) gives an account of the testing of
this Ada implementation. For any technical terms used in this
report, the reader is referred to [Pro90]. A detailed description
cf the ACVC may be found in the current ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the
Ada Certification Body may make full and free public disclosure of
this report. In the United States, this is provided in accordance
with the "Freedom of Information Act" (5 U.S.C. #552). The results
of this validation apply only to the computers, operating systems,
and compiler versions identified in this report.

The organizations represented on the signature page of this report
do not represent or warrant that all statements set forth in this
report are accurate and complete, or that the subject
implementation has no nonconformities to the Ada Standard other
than those presented. Copies of this report are available to the
public from the AVF which performed this validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results
should be directed to the AVF which performed this validation or
to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-~1772

1.2 REFERENCES
{AdaB83] Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-1815A, February 1983 and ISO 8€52-1987.

1-1

(Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June
1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested vy means of the ACVC.
The ACVC contains a collection of test programs structured into six
test classes: A, B, ¢, D, E, and L. The first letter of a test
name identifies the class to which it belongs. Class A, C, D, and
E tests are executable. Class B and class L tests are expected to
produce errors at compile time and link time, respectively.

The executable tests are written in a self-checking manner and
produce a PASSED, FAILED, or NOT APPLICABLE message indicating the

result when they are executed. Three Ada library units, the
packages REPORT and SPPRT13, and the procedure CHECK FILE are used
for this purpose. The package REPORT also provides a set of

identity functions used to defeat some compiler optimizations
allowed by the Ada Standard that would circumvent a test objective.
The package SPPRT13 is used by many tests for Chapter 13 of the aAda
Standard. The procedure CHECK FILE is used to check the contents
of text files written by some of the Class C tests for Chapter 14
of the Ada Standard. The operation of REPORT and CHECK_FILE is
checked by a set of executable tests. If these units are not
operating correctly, validation testing is discontinued. Class B
tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled
and the resulting compilation listing is examined to verify that
all violations cf the Ada Standard are detected. Some of the class
B tests contain legal Ada code which must not be flagged illegal by
the compiler. This behavior is also verified.

Class L tests check that an Ada implementation correctly detects
violation of the Ada Standard involving multiple, separately
compiled units. Errors are expected at link time, and execution is
attempted.

In some tests of the ACVC, certain macro strings have to be
replaced by implementation-specific values -- for example, the
largest integer. A list of the values used for this implementation
is provided in Appendix A. In addition to these anticipated test
modifications, additional changes may be required to remove
unforeseen conflicts between the tests and implementation-dependent
characteristics. The modifications required for this
implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by

1-2

the AVF. This customization consists of making the modifications
described in the preceding paragraph, removing withdrawn tests (see
section 2.1) and, possibly some inapplicable tests (see Section 3.2
and (UG89]).

In order to pass an ACVC an Ada implementation must process each
test of the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to
be added to a given host and target computer
system to allow transformation of Ada programs
into executable form and execution thereof.

Ada Compiler The means for testing compliance of Ada

Validation implementations, Validation consisting of the
Capability test suite, the support programs, the ACVC
(ACVCQ) Capability user's guide and the template for

the validation summary (ACVC) report.
Ada An Ada compiler with its host computer system and
Implementation its target computer system.
Ada The part of the certification body which carries
Validation out the procedures required to establish the

Facility (AVF) compliance of an Ada impiementation.

Ada The part of the certification body that provides
Validation technical guidance for operations of the Ada
Organization certification system.

(AVO)

Compliance of The ability of the implementation to pass an ACVC
an Ada version.

Implementation
Computer A functional unit, consisting of one or more
System computers and associated software, that uses

common storage for all or part of a program and
also for all or part of the data necessary for
the execution of the program; executes
user-written or user-designated programs; performs
user~designated data manipulation, including
arithmetic operations and logic operations; and
that can execute programs that modify themselves
during execution. A computer system may be a
stand-alone unit or may consist of several
inter-connected units.

1-3

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

Operating
System

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn
testT

Fulfillment by a prcduct, process or service of
all requirements specified.

An individual or corporate <.tity who enters into
an agreement with an AVF which specifies the terms
and conditions for AVF services (of any kind) to
be performed.

A formal statement from a customer assuring that
conformity is realized or attainable on the Ada
implementation for which validation status is
realized.

A computer system where Ada source programs are
transformed into executable form.

A test that contains one or more test objectives
found to be irrelevant for the given Ada
implementation.

Software that controls the execution of programs
and that provides services such as resource
allocation, scheduling, input/output control,
and data management. Usually, operating systems
are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada
programs are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated
successfully either by AVF testing or by
registration [Pro90].

The process of checr” ' the conformity of an Ada
compiler to the Ad. : ..gramming language and of
issuing a certificete for this implementation.

A test found to be incorrect and not used in
conformity testing. A test may be incorrect
because it has an invalid test objective, fails
to meet its test objective, or contains erroneous
or illegal use of the Ada programming language.

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

Some tests are withdrawn by the AVO from the ACVC because they do
not conform to the Ada Standard. The following 94 tests had been
withdrawn by the Ada Validation Organization (AVO) at the time of
validation testing. The rationale for withdrawing each test is
available from either the AVO or the AVF. The publication date for
this list of withdrawn tests is 91-05-03.

E28005C B28006C C34006D C355081I C35508J C35508M
C35508N C35702A C35702B B41308B C43004A C45114A
C45346A C45612A C45612B Cs5612C C45651A C46022A
B49008A B49008B A74006A C74308A B83022B B83022H
BE83025B B83025D B83026B c83026A C83041A B85001L
C86001F C94021A C97116A C98003B BAZ2011A CB7001A
CB7001B CB7004A CClz223A BCl226A CCl226B BC3009E
BD1BO2B BD1BO6A AD1BOS8SA BD2AOZA CD2AZ1E CD2A23E
chzasza CD2A41A CD2A41E CD2A87A CD2R15C BD3006A
BD4008A CDh4022A CD4022D CD40z4B Ch4024C CD4024D
CD4031A CD4051D CD5111A CD7004C ED7005D CD7005E
AD7006A CD7006E AD7201A AD7201E CD72048B AD7206A
BD8002A BD8004C CD9005A CD9005B CDAZ201E CE21071
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111cC
CE3116A CE3118A CE3411B CE3412B CE3607B CE3607C
CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test 1is 1inapplicable if it contai..s test objectives which are
irrelevant for a given Ada implementation. The inapplicability
criteria for some tests are explained in documents issued by ISO
and the AJPO known as Ada Issues and commonly referenced in the
format AI-dddd. For this implementation, the following tests were
inapplicable for the reasons indicated; references to Ada Issues
are included as appropriate.

The following 327 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113C..Y (23 tests)
C35706C..Y (23 tests)
C35708C..Y (23 tests)

C35705C..Y (23 tests)
C35707C..Y (23 tests)
C35802C..Z (24 tests)

C45241C..Y (23 tests) C45321C. .Y (23 tests)
C45421C. .Y (23 tests) C45521C..2 (24 tests)
C45524C. .2 (24 tests) C45621C..Z (24 tests)
C45641C..Y (23 tests) C46012C..2 (24 tests)

C35713B, C45423B, B86001T, and C86006H check for the predefined

type SHORT FLOAT; for this implementation, there is no such ‘“.ype.

The following 21 tests check for the predefined type SHORT INTEGER:;
for this implementation, there is no such type:

C35404B B3610EC C/5231B C45704B C45411B
C45412B C45502B C45.03B C45504B C45504E
C45611B C45613B C45614B C45631B C45632R
B52004C C55B0O7B B55B0SD B86001V C86006D
CD7101E
C35404D, C45231D, B860vV1X, C86005E, and <CD7101G check for a
predefined integer type with a name other than INTEGER,
LONG_INTEGER, or SHORT_INTEG:R; for this implementation, there is

no such type.

C35713C, B86001U,
LONG_FLOAT;

and C86006G check for the predefined type
for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating=-point type with
a name other than FLOAT, LONC FLOAT, or SHORT_FLOAT: for this
implementation, there is no such type.

C45531M..P and C45522M..P (8 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or greater:; for
this implementation, there is no such type.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE _OVERFLOWS 1is FALSE for floating point types; for this
implementation, MACHINE_ OVERFLOWS is TRUE.

D64005F uses 10 levels of recursive procedure calls nesting; this
iwvel of nesting for procedure calls exceeds the capacity of the
compiler.

D64005G uses 17 levels of recursive procedure calls nesting; this
test exceeds the linkable size of 128KBytes.

B86001Y uses the name of a predefined fixed-point type other than
DURATION; for this implementation, there is no such type.

CD1009C checks whether a .iength cleuse can specify a non-default
size for a floating-point type; this implementation does r»t
suppnrt such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length
clauses to specify non-default sizes for access types; this
inplementation does not support such sizes.

AE2101C uses instantiations of package SEQUENTIAL IO with
unconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this
compiler.

AE2101H uses instantiations of package DIRECT IO with unconstrained
array types and record types with discriminants without defaults;
these instantiations are rejected by this compiler.

The following 264 tests check operaticns on sequential, text, and
direct acces: files; this implementation does not support external
files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) TE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401a..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..T (2) CE2411iA CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE33013
CE3302A CE3304A CE3205A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..T (2) CE3404B..D (Z) CE3405A EE3405B
CE3405C..D (2) CF3406A..D (4) CE3407A..C (3) CE340°A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE3410F CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A. \4) CE3.)3a CE3604A..B (2) CE3605A..E (5)
CE3¢06A. .3 (2) CE3704A..F (6) CE3704M..0 (3) CEZ705A..E (5)
CE3706D CE37N6F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 44 tests.

2-3

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in

the way expected by the original tests.

B22003A B22C04A B23004A B24005A B24005B B28003Aa
B33201C B33202C B33203C B33301B B37106A B37301I
B38003A B38003B B38009A B38009B B44001A B44004A
B54A01L B55A01A B61005Aa B85008G B85008H BO95063A
B97103E BB1006B BC1l102A BC1l109A BC1109B BC1109C
BC1109D BC1201F BC1201G BC1201H BC12011 BC1201J
BC1201L BC3013A BE2210A BE2413A

C83030C and C86007A were graded passed by Test Modification as
directed by the AVO. These tests were modified by inserting
"PRAGMA ELABORATE (REPORT):" before the package declarations at
lines 13 and 11, respectively. Without the pragma, the packages
may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENT_INT at lines 14 and 13,
respectively, will raise PROGRAM_ ERROR.

C34005P and C34005S were graded passed by Test Modification as
directed by the AVO. These tests contain expressions of the form
"I - X'FIRST ~ Y'FIRST", where X and Y are of an array type with a
lower bound of INTEGER'FIRST; this implementation recognizes that
"X'FIRST + Y'FIRST" 1s a loop invariant and so evaluates this part
of the expression separately, which raises NUMERIC_ERROR. These
tests were modified by inserting parens to force a different order
of evaluation (i.p., to force the subtraction to be evaluated
first) at lines 187 and 262/263, respectively; those modified lines
are:

[C34005P, line 187]

IF NOT EQUAL (X (I), Y ((I - X'FIRST) + Y'FIRST)) THEN

[C34005S, lines 261..4 (only 262 & 263 were modified)]
IF NOT EQUAL (X (I, J),
Y ((I - X'FIRST) + Y'FIRST,
(J - X'FIRST(2)) +
Y'FIRST(2))) THEN

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is
described adequately by the information given in the initial
pages of this report.

For a point of contact for technical information about this
Ada implementation system, see:

Mr. Christopher T. Geyer
Fleet Combat Directions Systems Support Activity
Code 81, Room 301D
200 Catalina Blwvd.
San Diego, California 92147
619~-553~9447

For a point of contact for sales information about this Ada
implementation system, see:

NOT APPLICABLE FOR THIS IMPLEMENTATION

Testing of this Ada implementation was conducted at the
customer's site by a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes
each test of the customized test suite in accordance with the Ada
Programming Language Standard, whether the test is applicable or
inapplicable; otherwise, the Ada Implementation fails the ACVC
[Proso].

For all [rocessed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3429
b) Total Number of Withdrawn Tests 94
¢c) Processed Inapplicable Tests 647
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 0

3-1

f) Total Number of Inapplicable Tests €647 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

When this implementation was tested, the tests listed in section
2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this
compiler was tested, the tests listed in section 2.1 had been
withdrawn because of test errors. The AVI determined that 647
tests were inapplicable to this implementation. All
inapplicable tests were processed during validation testing.
In addition, the modified tests mentioned in section 2.3 were
also processed.

A magnetic tape containing the customized test suite (see
section 1.3) was taken on-site by the validation team for
processing. The contents of the magnetic tape were loaded
directly onto the host computer.

After the test files were loaded onto the host computer, the
full set of tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system
and executed on the target computer system.

Testing was performed using command scripts provided by the
customer and reviewed by the validation team. See Appendix B
for a complete listing of the processing options for this
implementation. It also indicates the default options. The
options invoked explicitly for validation testing during this
test were:

FOR /OPTIMIZE the options were:

/SUMMARY /OPTIMIZE /SOURCE /EMR /0UT=<filename>

The options invoked by default for validation testing during
this test were:

FOR /OPTIMIZE the options were:

NO_MACHINE_CODE NO_ATTRIBUTE NO_CROSS_REFERENCE
NO_ DIAGNOSTICS NO_NOTES PRIVATE LIST CONTAINER GENERATION

3-2

CODE_ON_WARNING NO MEASURE DEBUG CHECKS NO_EXECUTIVE
NO_RTE_ONLY TRACE_ BACK

Test output, compiler and linker listings, and job logs were
captured on magnetic tape and archived at the AVF. Selected

listings examined on-site by the validation team were also
archived.

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for
customizing the ACVC. The meaning and purpose of these
parameters are explained in [UG891. The parameter values are
presented in two tables. The ..:rst table lists the values
that are defined in terms of the maximum input-line length,
which is | the value for S$MAX_IN LEN--also listed here.
These values are expressed here as Ada string aggregates,
where "V" represents the maximum input-line length.

Macro Parameter Macro Value

SMAX IN_LEN 120

$BIG_1ID1 (1..V=1 => 'A', V => '1")

$BIG_ID2 (1..V=1 => 'A', V => '21")

$BIG_ID3 (1..V/2 => 'A') & '3'" & (1..V-1-V/2 => 'A')
SBIG_ID4 (1..V/2 => 'A') & '4' & (1..V=-1-V/2 => 'A")
SBIG_INT LIT (1..V=3 => '0') & "298"

$BIG_REAL LIT (1..V=-5 => '0') & "690.0"

$BIG_STRING1 tny g (1..V/2 => 'A') & ™!

$BIG_STRING2 tHYog (1..V-1-V/2 => 'A') & '1' & '™
$SBLANKS (1..V=20 => ' ")

$SMAX LEN INT_ BASED_LITERAL
m2T" & (1..V=5 => '0') & "11:"

SMAX LEN_REAL_BASED_LITERAL

"16T" & (1..V-7 => '0') & "F.E:"

$MAX STRING_LITERAL '"' & (1..V-2 => 'A') & '"'

The following table contains the values for the

macro parameters.

Macro Parameter

$SACC_SIZE
SALIGNMENT
SCOUNT_LAST
SDEFAULT MEM SIZE
$SDEFAULT STOR_UNIT
$DEFAULT_SYS_NAME

$DELTA_DOC

SENTRY ADDRESS
SENTRY ADDRESS1
SENTRY_ ADDRESS2
$FIELD LAST
$FILE_TERMINATOR
SFIXED NAME
$FLOAT_NAME
$FORM_STRING
$FORM_STRING2

SGREATER_THAN_DURATION

SGREATER_THAN DURATION_BASE_LAST
SGREATER THAN FLOAT_BASE_LAST
SGREATER_THAN FLOAT SAFE_LARGE

$GREATER_THAN SHORT FLOAT_SAFE_LARGE

SHIGH PRIORITY

remaining

Macro Value

32767
65_536
16
ANAYK14

2#0.0000_0000_0000_0000_0000_0
000_0000_001#

16408004
16#18004%
16%2800#%

32767

'
NO_SUCH_TYPE
NO_SUCH_TYPE

"n

“CANNOT RESTRICT FILE CAPACITY"
131071.5
131073.0
7.5E+75
7.5E+75
0.0EO

15

$ILLEGAL TXTERNAL_FILE NAMEl

SILLEGAL_EXTERNAL_FILE_NAMEZ2

SINAPPROPRIATE_LINE_LENGTH
SINAPPROPRIATE_PAGE_LENGTH
$INCLUDE_PRAGMA1
$INCLUDE_PRAGMA2

SINTEGER FIRST
$INTEGER_LAST

SINTEGER LAST_PLUS_1
$SINTERFACE_LANGUAGE

$LESS_THAN_DURATION

$LESS THAN DURATION BASE_FIRST

SLINE_TERMINATOR
$LOW_PRIORITY
SMACHINE CODE_STATEMENT
$SMACHINE_CODE_TYPE
$MANTISSA_DOC

$SMAX_ DIGITS

$MAX_INT

SMAX_INT PLUS_1

$SMIN INT

$SNAME

$SNAME_LIST

$SNAME SPECIFICATION1

SNAME SPECIFICATION2

BAD-CHARS"#.%!X@* () *&~%S$#@!'@

A NOTUHTET®R _BAD -
CHARS~#.%!X@* () *&~%S#@!@

-1
-1
PRAGMA INCLUDE ("A28006D1.TST")
PRAGMA INCLUDE ("B28006F1.TST")
-32768

32767

32_768
MACRO_NORMAL

-131071.5

-131073.0

ASCII.LF
0
instr'(lr, r0,r0)
instr

31

6
2147483647
2147483648
-2147483648
NO_SUCH_INTEGER_TYPE
ANUYK44,ANAYK14
X2120A

X2120B

SNAME_SPECIFICATION3
SNEG_BASED_INT
$SNEW_MEM SIZE
$SNEW_STOR_UNIT
$SNEW_SYS_NAME
$PAGE_TERMINATOR

SRECORD_DEFINITION

SRECORD_NAME
STASK_SIZE
STASK_STORAGE_SIZE
STICK
$VARIABLE_ADDRESS
SVARIABLE ADDRESS1
SVARIABLE ADDRESS2

$YOUR PRAGMA

X3119A
16#FFFFFFFE#
65_536

16

ANUYK44
ASCII.FF

RECORD value :
RECORD;

signed_byte_value
32

2048

0.00003125
16#0020%#

16#0021#

16#0023#

EXECUTIVE

signed byte; END

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically
noted otherwise, references 1in this appendix are to compiler
documentation and not to this report.

Version 3.5 Ada/M PSE Handbook
29 March 1991

EXECUTIVE Enables pragma EXECUTIVE and allows
visibility to units which have been
compiled with the RTE_ONLY option.
Default: NO_EXECUTIVE

MEASURE Generates code to monitor execution
frequency at the subprogram level fcr
the current unit. Default: NO_MEASURE

NO_CEECKS NO_CHECKS suppresses all run-time
error checking. CHECKS provides
run-time error checking.

Default: CHECKS

|
|
|
%
|
l
!
l
f
l
|
|
|
|
NO CODE ON WARNING |
- T NO_CODE_ON_WARNING means no code is I
generated when there is a diagnostic |

of severity WARNING or higher. |
CODE_ON_WARNING generates code |

only if there are no diagnostics |

of a severity higher than WARNING. |

Default: CODE_ON_WARNING }

|

|

!

|

|

|

l

|

|

NO _CONTAINER_GENERATION
NO_CONTAINER_GENERATION means that no
container is produced even if there
are no diagnostics.
CONTAINER _GENERATION produces a
container if diagnostic serverity
permits.
Default: CONTAINER_GENERATION

Table F-4a - Special Processing Options

F.14 Compiler Options

Ada/M PSE Handbook

Version 3.9
29 March 1991

. A - —— e — —— = —————— ———————— v —————— - —— ——————— ——— —— ———————

If NO_DEBUG is specified, only that
information needed to link, export
and execute the current unit is
included in the compiler output.

With the DEBUG option in effect,
internal representations and
additional symbolic informaction are
stored in the container.

Default: DEBUG

Disables the location of source
exceptions that are not handled by
built-in exception handlers.
Default: TRACE_BACK

Enables global optimizations in
accordance with the optimization
pragmas specified in the source
program. If the pragma OPTIMIZE is
not included, the optimizations
emphasize TIME over SPACE.

When NO_OPTIMIZE is in effect, no
global optimizations are performed,

regardless of the pragmas specified.

Default: NO_OPTIMIZE

Restricts visibility of this unit
only to those units compiled with
the EXECUTIVE option.
Default: NO_RTE_ONLY

Table F-S5b - Special Processing Options (Continued)

+
| Option
+
i
} NO_DEBUG
|
|
|
|
|
|
l
l
I
} NO_ TRACE BACK
|
l
I
: OPTIMIZE
|
|
|
|
|
|
l
I
I
{ RTE_ONLY
|
|
|
+
F.14

Compiler Options

Version 3.5 Ada/M PSE Handbook
29 March 1991

ATTRIBUTE Produces a Symbol Attribute Listing. |
(Produces an attribute cross-reference |

listing when both ATTRIBUTE and |
CROSS REFERENCE are specified.) :

Default: NO_ATTRIBUTE.

|

|

|

\

|

| CROSS_REFERENCE Produces a Crcss-Reference Listing.

| (Produces an attribute cross-reference
! listing when both ATTRIBUTE and !
| CROSS_REFERENCE are specified.) ’
{ Default: NO_CROSS_REFERENCE.

l
f
i
|
|

DIAGNOSTICS Produces a Diagnostic Summary Listing.
Default: NO_DIAGNOSTICS.

|
|
|
J
I
MACHINE CODE Produces a Machine Code Listing if |
code is generated. Code is generated !

when CONTAINER GENERATION option is |

in effect and (1) there are no |

diagnostics of severity ERROR, SYSTEM, |

or FATAL, and/or (2) NO_CODE_ON_WARNING |

option is in effect and there are no !

diagnostics of severity higher than |

NOTE. A diagnostic of severity NOTE i

is reported when a Machine Code |

Listing is requested and no code is i

generated. OCTAL is an additional i

option that may be used with |

MACHINE_CODE to output ocatal values |

on the listing instead of hex values. l

Default: NO_MACHINE CODE. ;

|

|

|

!

l

|

|

|

|

level In the Source Listing.
Default: NO_NOTES.

SOURCE Produces listing of Ada source
statements. Default: NO_SOURCE.

SUMMARY Produces a Summary Listing; always
produced when there are errors in the

i

|

|

|

l

|

|

|

!

| NOTES Includes diagnostics of NOTE severity
|

!

|

!

l

{

| compilation. Default: NO_SUMMARY.
|

Table F-6 - Ada/M Listing Control Options

1

-58 F.14 Compiler Options

Ada/M PSE Handbook Vers.on 3.5
29 March 199:

MSG Sends error messages and the
Diagnoscic Summary Liscing to the
file specified. The default is to ’
send error messages ancd the Diagnostic
summary Listing to Message Output
(usually tne terminal).

ouT Sends all selected listings tc a
single f£ile specified. The defau:it -
1s to send listings to Standard ‘
Output (ususally the terminal}. !

F.14 Compiier Ortions — F-59

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentaticn
and not to this report.

Version 3.5 Ada/M PSE Handbock
29 March 1991

F.16 Linker Options

i DEBUG Produces a linked container to be
5 debugged. Default: NO_DEBUG.

i ~OAD Deferred.

MEASURE Produces a linked container to be
analyzed. PDefault: NO_MEASURE.

NO IO_SUBSYSTEM Does not automatically pull in Ada/M
predefined IO subsystem phases
SYSTEM_IO_l1 and SYSTEM IO 2.
Default: IO_SUBSYSTEM.

PARTIAL Produces an incomplete linked
container with unresolved
references. Default: NO_PARTIAL.

| RTL_SELECTIVE Similar to the SELECTIVE option
except that it only refers to RTLIB
units. This option is not supported
during phase links.

| Default: NO_RTL_SELECTIVE.

| SEARCH Explicitly searches for the units to

i be included in the linked container.
Default: SEARCH for final links;
NO_SEARCH for phase links.

SELECTIVE Maps into the program only the
! subprograms called by the main
| subprogram. Default: SELECTIVE for
| fFinal links; NO_SELECTIVE for phase
! links.
|

Table F~-10 - Ada/M Linker Special Processing Options

'

-62 F.16 Linker Options

Ada/M PSE Handbook

F.

16

No option

DEBUGMAP

ELAB_LIST

LOADMAP

LOCAL_SYMBOLS

SYMBOLS

UNITS

Table F-11

Linker Options

Version 3.5
29 March 1991

Linker summary listing aiways
produced.

Deferred.

Generates an elaboration order
listing. Default: NO_ELAB_LIST.

Generates a loadmap listing.
Default: NO_LOADMAP.

Generates a symbols listing with
all internal as well as external
definitions in the program.
LOCAL_SYMBOLS 1s to be used in
conjunction with the SYMBOLS
option. If LOCAL_SYMBOLS is
specified with NO SYMBOLS, a

WARNING is produced and the SYMBOLS

option is activated.
Default: NO_LOCAL_SYMBOLS

Produces a Linker symbols listing.

Default: NO_SYMBOLS.

Produces a Linker units listing.
Default: NO_UNITS.

- Linker Listings Options

Version 3.5 Ada/M PSE Handbook
29 March 1991

MSG Sends error messages to the file
specified. The default is to send
error messages to Message Output
(usually the terminal).

ouT Sends all selected listings to the
single file specified. The default

is to send listings to Standard
Output (usually the terminal).

Table F-12 - Contrcl Part (Redirection) Options

F-64 F.16 Linker Options

Ada/M PSE Handbook

Version 3.5
29 March 1991

F.17 Exporter Options

F.

Generate image for the AN/AYK-14.
Default: UYK44.

l

l

|

|

| DEBUG Permits the generation of a load mcduie

| with all debugging facilities available.

I When NO_DEBUG is in effect, no debugging
| facilities are made available. i
| Default: NO_DE3UG. l
| |
| DYNAMIC Deferred. i
l |
| LOAD Deferred. |
i I
[MEASURE Permits the generation of a load module |
| with all performance measurement |
| facilities available. When NO_MEASURE |
] is in effect, no performance measurement |
l facilities are made available. |
| Default: NO_MEASURE. |
| l
| NO_UYK44 Generate image for the AN/AYK-14. |
| Default: UYK44. |
l |
e e ———— e ———— - —————— +

17

Table F-13 - Ada/M Special Processing Options

Exporter Options -

Versicn 3.5 Ada/M PSE Handbook
29 March 1991

MSG Sends error messages to the file '
specified. The default is to send J
error messages to Message Output ?
fusualliy cthe terminal). |

single file specified. The default
is to send listings to Standard

|

|

|

|

|

|

|

| ouT Sends all selected listings to the !
§ |
l Qutput (usually the terminal). i
l

Table F-14 - Control Part (Redirection) Options

F-66 F.17 Exporter Options

aAda/M PSE Handbook

F.

Version 3.5
29 March 1991

B itttk bbb T PP +
| Option Function |
S D . D AR T S D — - — . — o ————— - —— -~ —— -+
DEBUGMAP Deferred
LOADMAP Produces an Exporter Loadmap

17

LOCAL_SYMBOLS

RTEXEC

SYMBOLS

Listing. This listing shows the
locatior of each prograu sectlon for
each phase. Default: NO_LOADMAP.

Includes names local to library
package bodies in the Exporter
Symbol Definition Listing, if
produced. This option has no effect
if NO_SYMBOLS is in effect.
Default: NO_LOCAL_SYMBOLS

(include only names

which are externally visible).

Produces executive listings instead
of user application listings. It can
only be used with the /LOADMAP
option, i.e., /LOADMAP/RTEXEC.
Default: NO_RTEXEC.

Produces an Exporter Symbol
Definition Listing. This listing
shows the virtual and physical
locations of the symbols in memory
for each virtual memory phase.
Default: NO_SYMBOLS.

Produces an Exporter Units Listing.
Default: NO_UNITS.

Table F-15 - Ada/M Exporter Listing Options

Exporter Options

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
conventions as mentioned in Chapter 13 of the Ada Standard, and to
certain allowed restrictions on rzpresentation clauses. The
implementation-dependent characteristics of this Ada implementation,
as described in this Appendix, are provided by the customer. Unless
specifically noted otherwise, references in this Appendix are to
compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are
not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32 768 .. 32 767;
type LONG_INTEGER is range -2_147_483_647 .. 2_147_483 647;

type FLOAT is digits 6 range
-(16#0.FF_FFF8#E63) .. (16#0.FF_FFF8#E63);

type DURATION is delta 2.0 ** (-14) range
=131 071.0 .. 131 _071.0;

end STANDARD;

Ada/M PSE Handbook Version 2.5

29 March 1993

Appendix F

The Ada Language for the AN/UYK-44 and AN/AYK-14 Targets

The source language accepted by the compiler is Ada, as
described in the Military Standard, Ada Programming Language,
ANSI/MIL-STD-1815A-1983, 17 February 1983 ("Ada Language
Reference Manual").

The Ada definition permits certain implementation
dependencies. Each Ada implementation is required to supply a
complete description of its dependencies, to be thought of as
Appendix F to the Ada Language Reference Manual. This secticn is
that description for the AN/UYK-44 and AN/AYK-14 targets.

F.1 Options

There are several compiler options provided by all ALS/N
compilers that directly affect the pragmas defined in the Ada
Language Reference Manual. These compiler options currently
include the CHECKS and OPTIMIZE options which affect the SUPPRESS
and OPTIMIZE pragmas, respectively. A complete list of ALS/N
compiler options can be found in Section 9.

The CHECKS option enables all run-time error checking for the
source file being compiled, which can contain one or more
compilation units. This allows the SUPPRESS pragma to be useé in
suppressing the run-time checks discussed in the Ada Language
Reference Manual, but note that the SUPPRESS pragma(s) must be
applied to each compilation unit. The NO_CHECKS option disables
all run-time error checking for all compilation units within the
source file and is equivalent to SUPPRESSing all run-time checks
within every compilation unit.

The OPTIMIZE option enables all compile-time optimizations
for the source file being compiled, which can contain one or more
compilation units. This allows the OPTIMIZE pragma to request
either TIME-oriented or SPACE-oriented optimizations be
performed, bhut note that the OPTIMIZE pragma must be applied to
each compilation unit. If the OPTIMIZE pragma is not present,
the ALS/N compiler's Global Optimizer tends to optimize for TIME
over SPACE. The NO_OPTIMIZE option disables all compile-time
optimizations for all compilation units within the source file
regardless of whether or not the OPTIMIZE pragma is present.

In addition to those compiler options normally provided by

the ALS/N Common Ada Baseline compilers, the Ada/M compiler also
implements the EXECUTIVE, DEBUG, and MEASURE options.

F.1 Options F-0l

Version 3.5 Ada/M PSZ Hardbceex
29 March 1991

The EXECUTIVE compiler option enables processing of PRAGMA
EXECUTIVE and allows WITH of units compiled with the RTE ONLY
option. IF NO_EXECUTIVE is specified on the command line, tre
pragma will be ignored and will have no effect on the generated
code.

The DEBUG compiler option enables processing of PRAGMA DEBUG
tc provide debugging support. If NO_DEBUG is specified, the
DEBUG pragmas shall have no effect. ?Program units containing
DEBUG pragmas and compiled with the DIBUG compiler option may be
linked with program units containing DEBUG pragmas and compiled
with cthe NO_DEBUG option; only those program units compiled wizh
the DEBUG option shall have additional DEBUG supporc.

The MEASURE compiler option enables run-time calls to
Run-Time Performance Measurement Aids (RTAids) to record the
entrance into all subprograms whose bodies are in the
cempilation. Program units compiled with the MEASURE option may
be linked with program units not compiled with the MEASURE
option; at run-time, only those subprograms in program units
compiled with the MEASURE option shall have this additional
MEASURE support.

F-02 F.1l Options

-

Ada/M PSE Handbock version 3.5
29 Marcn .99:

F.2 Pragmas

Both implementation-defined and Ada language-defined pragmas
are provided by all ALS/N compilers. These paragraphs descripe
the pragmas recognized and processed by the Ada/M compiler. The
syntax defined in Section 2.8 of the Ada Language Reference
Manual allows pragmas as the only element in a compilation,
before a compiiation unit, at defined places within a compilazion
unit, or follcwing a compilation unit. Ada/M associates pragmas
with compilation units as follows:

a. If a pragma appears before any compilation unit in a
compilation, it will affect all following compilation uni=:s,
as specified below and in Section 10.1 of the Ada Language
Reference Manual.

b. If a pragma appears inside a compilation unit, it will be
associated with that compilation unit, and with the listings
associated with that compilation unit, as described in the
Ada Language Reference Manual, or below.

c. If a pragma follows a compilation unit, it will be associaced
with the preceding compilation unit, and effects of the
pragma will be found in the container of that compilation
unit and in the listings associated with that container.

The pragmas MEMORY SIZE, STORAGE_UNIT, and SYSTEM _NAME are
described in Section 13.7 of the Ada Language Reference Manual.
They may appear only at the start of the first compilation when
creating a program library. In the ALS/N, however, since program
libraries are created by the Program Library Manager and not by
the compiler, the use of these pragmas is obviated. If they
appear anywhere, a diagnostic of severity level WARNING is
generated.

4]

F.2 Pragmas -03

vers.on 3.5 Ada/M PSE Handbcok
29 March 1991

F.2.1 Lanquage-Defined Pragmas

The following notes specify implementation-specific changes
to those pragmas described in Appendix B of the Ada Language
Reference Manual. Unmentioned pragmas are implemented as defined
in the Ada lLanguage Reference Manual.

pragma INLINE (arg {,arg}):

The arguments designate subprograms. There are three

instances :in which the INLINE pragma is ignored. Each
cf these cases produces a warning message which states
that the INLINE did not occur.

a. If the compilation unit containing the INLINEd
subprogram depends on the compilation unit of its
caller, a routine call is made instead.

b. If the INLINEd subprogram's compilation unit
depends on the compilation unit of its caller (a
routine call is made instead).

c. If an immediately recursive subprogram call is made
within the body of the INLINEd subprogram (the
pragma INLINE is igncred entirely).

pragma INTERFACE (language_name, subprogram_name);

The language_name specifies the language and type of
interface to be used in calls used to the externally
supplied subprogram specified by subprogram_name. The
only value allowed for the first argument (language
name) is MACRO_NORMAL. MACRO_NORMAL indicates that
parameters will be passed on the stack and the calling
conventions used for normal Ada subprogram calls will

apply.

You must ensure that an assembly-language body
container will exist in the program library before
linking.

F-04 F.2.1 Language-Defined Pragmas

Ada,/M PSE Handbook Version 3.3
29 Marcn 199

pragma OPTIMIZE (arg):

The argument is either TIME or SPACE. If TIME is
specified, the optimizer concentrates on optimizing
code execution time. If SPACE is specified, the
optimizer concentrates on optimizing cecde size. The
default is If the OPTIMIZE option is enabled and pragma
OPTIMIZE is not present, global optimization is still
performed with the default argument, SPACE. Program
units containing OPTIMIZE pragmas and compiled with the
OPTIMIZE option may be linked with program unizs
containing OPTIMIZE pragmas and compiled with the
NO_OPTIMIZE option; but only those program units
compiled with the OPTIMIZE option will have global
optimization support. SPACE.

pragma PRIORITY (arg);

The argument is an integer static expression in the
range 0..15, where 0 is the lowest user-specifiable
task priority and 15 is the highest. If the value of
the argument is out of range, the pragma will have no
effect other than to generate a WARNING diagnostic. A
value of zero will be used if priority is not defined.
The pragma will have no effect when aot specified in a
task (type) specification or the outermost declarative
part of a subprogram. If the pragma appears in the
declarative part of a subprogram, it will have no
effect unless that subprogram is designated as the main
subprogram at link time.

pragma SUPPRESS (arg {,arg}l);:
This pragma is unchanged with the following exceptions:

Suppression of OVERFLOW_CHECK applies only to integer
operations; and PRAGMA SUPPRESS has effect only within
the compilation unit in which it appears, except that
suppression of ELABORATION_CHECK applied at the
declaration of a subprogram or task unit applies to all
calls or activations.

"l
|
o
%]

F.2.1 Language-Defined Pragmas

Version 3.5 Ada/M PSI Handpoox
29 March 1991

F.2.2 Implementation-Defined Pragmas

This paragraph cescri.bes the use and meaning of those pragmas
recognized by Ada/M which are not specified in Appendix B of =-ne
Ada Language Reference Manual.

pragma DJE30UG:

This pragma enables the inclusion of full symbolic
information and support for =he Embedded Target
Debugger. The DEBUG PRAGMA is enabled by the DEBUG
command line option and has no effect if this option is
not provided. This _ragma must appear within a
compilation unit, before the first declaration e
statement.

pragma EXECUTIVE [(arg)];

This pragma allows you to specify trat 2 compilation
unit is to run 1in the executive state of the machine
and/cr utilize privileged instructions. The pragma has
no effect 1f the compiler option NO_EXECUTIVE is
enabled, either explicitly or by default.

If PRAGMA EXECUTIVE is specified without an argument,
executive state 1s in effect for th. compilation unit
and the code generator does not generate privileged
instructions for the compilation unit. If PRAGMA
EXECUTIVE (INHERIT) is specified, a subprogram in the
compilation unit inherits the state of its caller ani
the code generator does not generate privileged
instructions for the compilation unit. If PRAGMA
EXECUTIVE (PRIVILEGED) is specified, the executive
state 1s in effect and the code generator may generate
privileged instructions for the compilation unit. In
the absence of PRAGMA EXECUTIVE, the compilation unit
executes in task stat2 and the code gener.ator does not
generate privileged instructions.

PRAGMA EXECUTIVE is applied once per compilation unit,
So its scope is the entire compilation unit. PRAGMA
EXECUTIVE may appear between the context clause and the
outermost unit. If there is no context clause, PRAGMA
EXECUTIVE must appear within that 1nit before the first
declaration or statement. The placement of the pragma
before the context clause has no effect on any or all
following compiiation units. If PRAGMA EXECUTIVE
apoears in the specification of a compilation unit, it
must also appear in the body of that unit, and vice
versa. If th2 pragma appears in a specification but 1is
absent from the body, you are warned and the pragma is
effective. If the pragma appears in the body of a
compilation unit, but is absent from the corresponding

F-06 F.2.2 Implementation-Defined Pragmas

Ada/M PSE Handbook

D

29 March

specification, you are warned and the pragma has no
effect. PRAGMA EXECUTIVE does not propagate to
subunits. If a subun.t s ccmpiled without PRAGMA
EXECUTIVE and the parent of the subunit is compiled
with PRAGMA EXECUTIVE, you are warned and PRAGMA
EXECUTIVE has no effect on tne subunics,

ragma FAST_INTERRMUPT_ENTRY (entry_name, IMMEDIATE);

[aal

This pragma provices for situations of high interrupt
rates with simple processing per interrupt, (such as
adding data to a buffer), and where complex processi.ug
occurs only after large numbers of these interrupts,
(such as when the buffer is full). This allows for
lower overhead and faster response capability by
restricting you to disciplines that are commensurate
with limitations normally found in machine level
interrupt service routine processing.

pragma MEASURE (extraction set, [arg {,arg}]);

This pragma erables one cr mcre performance measurement
features. Pragma MEASURE specifies a user-defined
extraction set for the Run-Time Performance Measurement
Alids and Embedded Target Profiler. The user-defined
extraction set consists of all occurences pragma
MEASURE throughout the program. Extraction_set is a
numecic literal, which is an index into a user-supplied
table. Arg is a variable or a list of variables whose
values are reported at this point in the exacution.
These values descripe tn2 nature (TYPE) cf the values
collacted to an independent data reduction p-ogram.
Prigma MEASURE is enabled ity the MEASURE command line
option and has no effect if this option is not
provided. This pragma should be applied to a package
body rather than a package specification.

pragma STATIC (INTERRUPT_HANDLER_TASK):

F.

2.2

The pragma STATIC is only allowed immediately after the
declaration of a task body containing an immediate
interrupt entry. The argument is
INTERRUPT_HANDLER_TASK. The effect of this pragma will
be to allow generation of nonreentrant and nonrecursive
code in a compilacion unit, and to allow static
allocation of all data in a compilation unit. Tnis
pragma shall be used to allow for procedures within
immediate (fast) interrupt entries. The effect will be
for the compiler to generate non-eentrant code for the
affecteu procedure bodies. If a STATIC procedure is
called recursively, the program is erroneousc.

Implementation-Defined Pragmas

Version

2.5

~39.

Vers.on 3.5

Ada/M PSE Eandoock
29 March 1939

pragma TICK (arg);

This is a system configuration pragma. It takes a
single argument of type universal _real, which specifies
the value of the named number SYSTEM.TICK. This pragma
may appear only at the start of the first compilation
when creating a program library. If this pragma
appears e.sewhere, a diagnostic of severity WARNING is
generaced.

pragma TITLE (arg):

This is a listing control pragma. It takes a single
argument of type string. The string specified will
appear on the second line of each page of the source
listing produced for the compilation unit within which
it appears. The pragma should be the first lexical
unlt to appear within a compilation unit (excluding
comments). If it is not, a warning message is issued.

pragma TRIVIAL_ENTRY (NAME: entry simple_name);

This pragma is only allowed within a task specification
after an entry declaration and identifies a

Trivial Entry to the system. A trivial entry
represents a synchronization point, contained in a
normal Ada task, for rendezvous with a fast interrupt
entry body. The body of a trivial entry must be null.

pragma UNMAPPED (arg {,arg});

The effect of this pragma is for unmapped (i.e., not
consistently mapped within the virtual space)
allocation of data in a compilation unit. The
arguments of this pragma are access types to be
unmapped. If a program tries to allocate more UNMAPPED
space than is available in the physical configuration,
STORAGE_ERROR will be raised at run-time. PRAGMA
UNMAPPED must appear in the same declarative region as
the type and after the type declaration.

F-08 F.2.2 Implementation-Defined Pragmas

Ada/M PSE Handbook vVersiocn 3.5

29 Marcn 1991

F.2.3 Scope of Pragmas

The scope for each pragma previously described as differing
from the Ada Language Reference Manual is given below.

DEBUG

EXECUTIVE

Applies to the compilation unit in which the gragma
appears.

Applies to the compilation unit in which the pracma
appears, i.e., to all subprograms and tasks wiznin
the unit. Elaboration code is not affected. <The
pragma is not propagated from specificaticns o
bodies, or from bodies to subunits. The pragma
must appear consistently in the specification,
bedy, and subunits associated with a library un:it.

FAST_INTERRUPT ENTRY

INLINE

INTERFACE

MEASURE

MEMORY_SIZE

OPTIMIZE

PRIORITY

STATIC

STORAGE_UNIT

SUPPRESS

Applies to the compilation unit in which the pragma
appears.

Applies only to subprograms named in its
arguments. If the argument i1s an overloaded
subprogram name, the INLINE pragma applies to
all definitions of that subprogram name which
appear in the same declarative part as the
INLINE pragma.

Applies to all invocations of the named
imported subprogram.

No scope, but a WARNING diagnostic is
generated.

No scope, but a WARNING diagnostic is
generated.

Applies to the entire compilation unit in
which the pragma appears.

Applies to the task specification in which it
appears, or to the environment task if it
appears in the main subprogram.

Applies to the compilation unit in which the pragma
appears.

No scope, but a WARNING diagnostic is
generated.

Applies to the block or body that contains
the declarative part in which the pragma
appears.

F.2.3 Scope of Pragmas F-09

Version 3.5 Ada/M PSE Handbocxk
29 March 1991

SYSTEM_NAME No scope, but a WARNING diagnostic is

generated.

TICK Applies to the entire program library in
which the pragma appears.

TITLE The compilation unit within which zhe¢ pragma
cccurs.

TRIVIAL ENTRY Applies to the compilation unit in which the pragma
appears.

UNMAPPED Applies to all objects of the access type

named as arguments.

F-10 F.2.3 Scope of Pragmas

Ada/M PSE Handbook

F.3 Attributes

Version 3.5
29 March 199:

The following notes augment the language-required definisicns
of the predefined attributes found in Appendix A of the Ada

Language Reference Manual.

T'MACHINE_EMAX is
T'MACHINE_EMIN is
T'MACHINE_MANTISSA is
T'MACHINE_OVERFLOWS is
T'MACHINE_RADIX is
T'MACHINE_ROUNDS is

F.3 Attributes

63.
~-64.
6.
TRUE.
16.

FALSE.

vers.cn 3.5 Aca/M PSI Hanczooox
29 March 1991

F.4 Predefined Language Environment

Tne predefined Ada language environment consists of the
packages STANDARD and SYSTEM, which are described below.

F.4.1 Package STANDARD

Trhe package STANDARD contains the following definitions in
addizicn to those specified in Appendix C of the Ada lLanguage
Reference Manual.

{PZ boolean IS (false, true):;
CR boolean'SIZE USE 1:

T integer IS RANGE -32_768 .. 32_767;
T long_integer IS RANGE -2_147_483_648 .. 2_147_483_647;

YFZ £loatc IS DIGITS 6 RANGE
~-(.6#0.FFFFF8#E63) .. (l6#0.FFFFFB#EE3);

-- Addizions to predefined subtypes:

SUBTYPE long_natural IS long_integer RANGE 0..integer'LAST;
SUSTYFI long_positive IS long_integer RANGE l..integer 'LAST;

raczer'SIZE USE 8;
TYFE ring IS ARRAY (positive RANGE <>) OF character:
PRAGMA PACK(string):

-y oo o=

T7PZ duracion IS DELTA 2.0 ** (~14)
RANGE -131_071.0 .. 131_071.0;

-- Tne precefined exceptions:

ccnstraint_error : exception;

numeric_error : exception;

program_error : exception;

storage_error : exception;

tasking_error : exception;
|
|
|

F=-12 F.4.1 Package STANDARD

Ada/M PSE Handbook Version 3.5

29 Marcn 1991

F.4.2 Package SYSTEM

The SYSTEM packages for Ada/M are as follows:

F.4.2.1 AN/UYK-44 SYSTEM

F.4.2.1 AN/UYK-44 SYSTEM

The package SYSTEM for the AN/UYK 44 is:

TYPE name IS (anuyk44, anaykl4);
system _name : CONSTANT system.name := system.anuykd44;
storage_unit : CONSTANT := 16;

memory_size : CONSTANT := 65_536;
TYPE address IS RANGE 0..system.memory size - 1;
FOR address'SIZE USE 16;

-~ System Dependent Named Numbers

min_int : CONSTANT := =(2**31);
max_int : CONSTANT := (2**3]1)-1;
max_digits : CONSTANT := 6;
max mantissa : CONSTANT := 31;
fine delta : CONSTANT :=

2%0.0000 _0000_0000 0000 _0000_0000_0000_001#:
tick : CONSTANT := 3.125e-05;

-- 1/32000 seconds is the basic clock period.
-- Other System Dependent Declarations

SUBTYPE priority IS integer RANGE 0..15;
TYPE entry kind IS (normal, immediate);

physical _memory_size : CONSTANT := 2%*22;
TYPE physical_address IS
RANGE 0..system.physical _memory_size - 1;
TYPE external_interrupt_word IS RANGE 0 .. 65_536;

Address clause (interrupt) address codes for the

ANUYK-44
Class_I Unhandled_address : CONSTANT
address := 16#0800#;
Class_II Unhandled_address : CONSTANT
address := 16#1800#;
Class_III Unhandled_address : CONSTANT

address := 16#2800¢%;

')
|
pes
w

Version 3.5
29 March 1991

CP:Memory_Resume_address :
CP_Memory Parity address
IOC_Memory Parity_address
IOC_Memory_ Resume_address

Power_Fault_address

Class I interrupts

Class II interrupts

CONSTANT
address
CONSTANT
address
CONSTANT
address
CONSTANT
address
CONSTANT
address

Ada/M PSE Handbook

CP_Instruction_Fault_address CONSTANT
address :
Executive_Mode_Fault_address CONSTANT
address
I0C_Instruction_Fault_address CONSTANT
address
IOC_Protect_Fault_address CONSTANT
address
CP_Protect_Fault_address CONSTANT
address
once_only pti CONSTANT duration := 0.0;

-- Used to indicate that a PTI is not to be
SUBTYPE pti_address IS address RANGE 16#2F01#..1642F1F#;
TYPE pti_state IS (active,inactive,unregistered);

-—— o —— - - - - - - - - -

MMIO Discrete_Interrupt_address :
MMIO_External Interrupt_address :
MMIO Output Data_Ready_address :

MMIO_Input Data_Ready_address

IOC_Intercomputer_Timeout_address

IOC_External Int Discrete_address :
IOC_Output_Chain_Interrupt_address

IOC_Input_Chain_Interrupt_address :

F-14

CONSTANT
address
CONSTLANT
address
CONSTANT
address
CONSTANT
address
CONSTANT
address
CONSTANT
address

¢ CONSTANT

address
CONSTANT
address

F.4.2.1

Class III (I/0) interrupts

D - - ——— - - - —— -

16#1000#;
164#1400#;
16#1700#;
16#1A00#;

l6#1F00#;

16#22004#;
16#2300#;
16%42400%;

16#2500%;
1642900#%;

periodic.

1643C00#;
16#3D00%;

:= 16#3E00%;
:= 16#3F00#%;
16#3C00¢#;

.0
L]

164#3D00%;

16#3E00%;

164#3F00%;

AN/UYK-44 SYSTEM

Ada/M PSE Handbook Version 3.3
29 March 1961

-- The following exceptions are provided as a "convention"
-- whereby the Ada program can be compiled with all implici:
-- checks suppressed (i.e., pragma SUPPRESS or equivalentz),
-- explicit checks included as necessary, the appropriate

-~ exception raised when required, and then the excepticn 's
-- either handled or the Ada program terminates.

access_check : EXCEPTION;
discriminant_check : EXCEPTION;
index_check : EXCEPTION;
length check : EXCEPTION;
range check : EXCEPTION;
divisIon_check : EXCEPTION;
overflow_check : EXCEPTION;
elaboratIon_check : EXCEPTION;
storage_check : EXCEPTION:

-- implementation-defined exceptions.
unresolved_reference : EXCEPTION;
system_error : EXCEPTION;
capacity_error : EXCEPTION;

F.4.2.1 AN/UYK-44 SYSTEM F-.5

Version 3.9 Ada/M PSE Handbooxk
29 March 1991

F.4.2.2 AN/AYK-14 SYSTEM

The package SYSTEM for the AN/AYK-14 is:

TYPE name IS (anuyk44, anaykld):
system_name : CONSTANT system.name := system.anaykl4;
storage_unit : CONSTANT := 16;

memory_size : CONSTANT := 65_536:
TYPE address IS RANGE 0..system.memory_size - 1;
FOR address'SIZE USE 16;

-- System Dependent Named Numbers

min_int : CONSTANT := =(2**31l);
max_int : CONSTANT := (2**31)-1;
max_digits : CONSTANT := 6;
max_mantissa : CONSTANT := 3L
fine_delta : CONSTANT :=

2%¥0.0000_0000_0000 0000_0000 0000_0000_001#;
tick : CONSTANT := 3.125e-05;

-- 1/32000 seconds is the basic clock period.
-- Other System Dependent Declarations

SUBTYPE priority IS integer RANGE 0..15;
TYPE entry _kind IS (normal, immediate);

physical_memory _size : CONSTANT := 2**22;
TYPE physical address IS
RANGE 0..system.physical _memory_size ~ 1;
TYPE external_interrupt_word IS RANGE 0 .. 65_536;

-- Address clause (interrupt) address codes for the

-- ANAYK-14
Class_I_Unhandled_address : CONSTANT
address := 16#0800%;
Class_II_Unhandied_address : CONSTANT
address := 16#1800#%;
lass_III_Unhandled_address : CONSTANT

address := 16#2800#%;

F-16 F.4.2.2 AN/AYK-14 SYSTEM

Ada/M PSE Handbook

Memory_Resume_address

Memory Parity_address

Thermal Overload_address

I0_Failure_address

Hardware BIT_Fault_address

Hardware_Fault_Warning_address

Power Fault_address

- — - - — - - - T Wn - . —

inter

Class II interrupts
CP_Instruction_Fault_address

Version 3,
29 March 199

Executive_Mode_Instruction_Fault_address :

IO_Instruction_Fault_address

System_Reset_address

Overtemp_address

Memory Protect_Fault_address
External_Interrupt_2_address
External_Interrupt_3_address

External_Interrupt_4_address

once_only _pti : CONSTANT duration
to indicate that a PTI is not to be periodic
SUBTYPE pti_address IS address RANGE 16#2FO01#..l6#2F1F#

-- Use

- J¥

[4

LUPLS =~==ewee-—m—mmm——e oo

CONSTANT

address := 16#1000¢;

CONSTANT

address := 16#1.400¢;

CONSTANT

address := 1641.900¢4;

CONSTANT

address := 164.800#%;
: CONSTANT

address := 16#.C00%;
: CONSTANT

address := 1l6#1D00#%:

CONSTANT

address := 16#1F00#%:;
:+ CONSTANT

address := 16#2200#;

CONSTANT

address := 16#2300#%:;

CONSTANT

address := 16#2400%;
: CONSTANT

address := 16#2500¢;

CONSTANT

address := 16#2700#%;
: CONSTANT

address := 16#2900#;
+ CONSTANT

address := 16#2C00#;
: CONSTANT

address := 16#2D00#;
:+ CONSTANT

address := 164#2E00#%;

:= 0.0;

-e

TYPE pti_state IS (active,inactive,unregistered);

--------- s====-=-=--- Class III (I/0) interrupts ===-====----

I0_Channel_Abnormal_address
External Interrupt_address
Output_Chain_Interrupt_address

Input_Chain_Interrupt_address

F.4.2.2

AN/AYK-14 SYSTEM

.
.

CONSTANT
address := 16#3C00#;
CONSTANT
address := 16#3D00#:;
CONSTANT
address := lG4#3E00#;
CONSTANT
address := 16#3F00#%;

version 3.5 Ada/M PSE Handpeox
29 March 1991

-- The following exceptions are provided as a "convention"
-- whereby the Ada program can be compiled with all implici-«
-- checks suppressed (i.e., pragma SUPPRESS or equivalent),
-- explicit checks included as necessary, the appropriate

-- exception raised when required, and then the excepticn is
-- either handied or the Ada program terminates.

access_check : EXCEPTION;
discriminant_check : EXCEPTION;
index_check : EXCEPTION:
length_check : EXCEPTION;
range_check : EXCEPTION;
division_check : EXCEPTION:
overflow_check : EXCEPTION;
elaboration_check : EXCEPTION;
storage_check : EXCEPTION;

-- implementation-defined exceptions.
unresolved_reference : EXCEPTION:
system_error : EXCEPTION:
capacity_error : EXCEPTION;

F-18 F.4.2.2 AN/AYK-14 SYSTEM

Ada/M PSE Handbook Version
29 March
F.5 Character Set

Ada compilations may be expressed using the following
characters in addition to the basic¢ character set:

iower case letters:
abcdefghijklmnopgrsctuvwsxyz
special characters:
s s 2 @ (1~ ()} °
The following transliterations are permitted:
a. Exclamation point for vertical bar,
b. Colon for sharp, and

c. Percent for double-quote.

F.5 Character Set

3.3
1391

F-1i93

Version 3.5 iHda/M FSE Harndozocex
29 March 1991

P.6 Declaration and Representation Restrictions

Declarations are described in Section 3 o the Ada Larguage
Reference Manual, and representation specificaticns are describe-
in Section 13 of the Ada Language Reference Manual and discussed
here,.

In the following specifications, the capizalized word SIZ:
indicates the number of bits used to regpresent an objecz cf tre
type under discussion. The upper case symbols D, 1L, R,
correspond to those discussed in Section 3.5.9 of =zhe Ada
Language Reference Manual.

F.6.1 Integer Types
Integer types are specified with corstraints of the form:

RANGE L..R

where:

R <= SYSTEM.MAX INT & L >= SYSTEM.MIN_INT

For a prefix "t" denoting an integer type, length specifications
of the form:

FOR t'SIZE USE n ;

may specify integer values n such that n in 2..16,
R <= 2**(n-1)-1 & L >= =(2**(n-1,}

or else such that
R <= (2**n)-1 & T >= 0

and 1 < n <= 15,

For a stand-alone object of integer type, a default SIZE of 16 is
useéd when:

R <= 2#*15-1 § L >= =2**]5
Otherwise, a SIZE of 32 is used.
For components of integer types within packed composite

objects, tre smaller of the default stand-alone SIZE or the SIZE
from a length specification is used.

F=-20 F.6.1 1Integer Types

-

Ada/M PSE Handbook versicn 3.5
29 March 5391
P.6.2 PFloating Types
Floating tyves are specified with constraints cf the form:
DIGITS D
where D 1s an integer in the ran~e l through o.

For a prefix "t" denoting a floating pocint type, leng:n
specifications of tne form:

FOR t'SIZE JSE n:
may specify integer values n = 32 when D <= 6. All flcating
point values have SILE = 32.
F.6.3 Fixed Types

Fixed types are specified with constraints of the form:

DELTA D RANGE L..R
where:

MAX (ABS(R), ARS(L))

-------------------- <= 2%*%*31-1,

actual_delta

The actual delta defaults to thhe largest integral power of 2 less
than or equal to the specified delta D. (This implies that £ixed
values are stored right-¢ligned.;
For fixed point types, length specifications of the form:

for T'SIZE use N;

are permitted only when N in 1 .. 32, if:

R - actual_deita <= 2**(N-1l)-1 * actual_delta, and
L + actual _celta >= =-2**(n-1) * actual)delta

QT

R - actual_delta <= 2**(N)-1 * actual_delta, and
L >0

(23]
]
~N
._‘

F.6.3 Fixed Types

Version 3.5 Ada/M PSE Handbecck
29 March 1991

For stand-alone objects of fixed point type, a default size of 22
is used. For components of fixed point types within packed
composite objects, the size from the length specification will be
used.

For specifications of the form:
FOR t©'SMALL USE n;
are permitted for any value of X, such that X <= D. X mus: be

specified either as a base 2 value or as a base 10 value. Nc:te
that when X 1s specified as other than a power of 2, actual de.:a

will still be the largest integreal power of two less than X.

F.6.4 Enumeration Types
In the absence of a representation specification for an

enumeration type "t," the internal representation of t'FIRST is
0. The default size for a stand-alone object of enumeration type
"t" is 16, so the internal representations of t'FIRST and t'LAST
both f£all within the range

-2**15 ,, 2**15 - 1.
For enumeration types, length specifications of the form:

FOR t'SIZE USE n:
and/or enumeration ‘representations of the form:

FOR t USE <aggregate>;

are permitted for n in 2..16, provided the representations and
the SIZE conform to the relationship specified above.

Or else for n in 1..16, is supported for enumeration types
and provides an internal representation of:

t'FIRST >= 0 .. t'LAST <= 2**(t'SIZE) - 1.

For components of enumeration types within packed composite
objects, the smaller of the default stand-alone SIZE and the SIZE
£rom a length specification is used.

Enumeration representations for types derived from the
predefined type STANDARD.BOOLEAN will not be accepted, but length
specifications will be accepted.

F-22 F.6.4 Enumeration Types

Ada/M PSE Handbook) Version 2.5

- .

29 March .99

F.6.5 Access Types
For access type, "t," length specifications of the form:
FOR t'SIZE USE n;

will not affect the runtime implementation of "t," therefora n =
16 is the only value permicted for SIZZ, which is the value
returned by the attribute,.

For collection size specification of the form:
FOR t'STORAGE_SIZE USE n;

for any value of "n" is permitted for STORAGE SIZE (and tha:
value will be returned by the attribute call). The collect:io
size specification will affect the implementation of "t" and :i:s
collection at runtime by limiting the number of objects for type
"t" that can be allocated.

The value of t'STORAGE_SIZE for an access type "t" specifies
the maximum number oOf storage_units used for all objects in the
collection for type "t." This includes all space used by the
allccated objects, plus any additional storage required to
maintain the collection.

F.6.6 Arrays and Records
For arrays and records, a length specification of the form:
FOR t'size USE n;

may cause arrays and records to be packed, if required, to
accommodate the length specification. If the size specified is
not large enough to contain any value of the type, a diagnostic
message of severity ERROR is generated.

The PACK pragma may be used to minimize wasted space between
components of arrays and records. The pragma causes the type
representation to be chosen such that the storage space
requirements are minimized at the possible expense of data access
time and code space.

A record type representation specification may be used to
describe the allocation of components in a record. Bits are
numbered 0..15 from the right. 16 starts at the right of the
next higher numbered word. Each location specification must
allow at least n bits of range, where n is large encugh to hold
any value of the subtype of the component being allocated.
Otherwise, a diagnostic message of severity ERROR is generated.
Components that are arrays, records, tasks, or access variables
may not be allocated to specified locations. 1If a specification

F.6.6 Arrays and Records F-23

Versicn 3.5 Ada/M PSz Handébook
29 March 1991

of this form is entered, a diagnostic message of severity ERROR
is generated.

For records, an alignment clause of the form:
AT MOD n

specify alignments of 1 word (word alignment) or 2 words
(doubleword alignment).

If£ it is determinable at compile time that the SIZE of a
record or array type or subtype is outside the range of
STANDARD.LONG_INTEGER, a diagnostic of severity WARNING is
generated. Declaration of such a type or subtype would raise
NUMERIC_ERROR when elaborated.

F.6.7 Other Length Specifications

Length Specifications are described in Section 13.2 of the
Ada Language Reference Manual.

A le¢ .gth specification for a task type "t" of the form:
FOR t'STORAGE_SIZE use n;

specifies the number of SYSTEM.STORAGE _UNITS that are allocated
for the execution of each task object of type "t." This includes
the runtime stack for the task object but does not include
objects allocated at runtime by the task object. If a
t 'STORAGE_SIZE is not specified for a task type "t," the default
value is 8K (words).

A length specification for a task type "t" of the form:

FOR t'SIZE USE n;

is allowable only for n = 32,

F-24 F.6.7 Other Length Specifications

Ada/M PSE Handbook Version 3.5
29 March 1991

P.7 System Generated Names

Refer to Section 13.7 of the Ada Language Reference Manual
and the section above on the Predefined Language Envircrment fcor
a discussion of package SYSTEM.

The system name is chosen based on the target(s) suppor:ed,
but 1t cannot be changed. In the case of Ada/M, the system nanme
1s ANUYK44 or ANAYK14.

F.8 Address Clauses

Refer to Section 13.5 of the Ada Language Reference Manua.l
for a description of address clauses. All rules and restriczizns
described there apply. 1In addition, the following restrictions

apply.

An address clause may designate a single task entry. Such an
address clause is allowed only within a task specification. The
meaningful values of the simple expression are the allowable
interrupt entry addresses as defined in Table F-l1. The use of
other values will result in the raising of a PROGRAM_ERROR
exception upon creation of the task.

If more than one task entry is equated to the same interrupd:
entry address, the most recently executed interrupt entry
registration permanently overrides any previous registrations.

At most one address clause is allowed for a single task
entry. Specification of more than one interrupt address for a
task entry is erroneous.

Address clauses for objects and code other tha task entries
are allowed by the Ada/M target, but they have no effect beyond
changing the value returned by the 'ADDRESS attribute call.

45

F.8 Address Clauses

Version 3.5
29 March 1991

Ada/M PSE Handbook

| Class 0 interrupts (with interrupt entry address) include:
- - —— ——— - —— - - = — . - - . - - W - ——— - - ——— - = - .- -
!
i o Class I Unhandled Interrupt 16#0800#
P - > D A S . m em W N S G S A A b S S S W N D R SR R R W S A = W
| Class I interrupts (with interrupt entry address) inciude:
B T U —
0 Class II Unhandled 16#1800#
o CP Memory Resume 16#1000%#
o CP Memory Parity 16#1400#%
o IOC Memory Parity 16#1700#
o IOC Memory Resume 16%#1A00#
o Power Fault 16#1F00#
e ot o
| Class II interrupts (with interrupt entry address) include:
- ——— —— — ————— - - - W " . D . . W - W WS WD W —— - ——
o Class III Unhandled 16#2800¢#
o Floating Point Over/Underflow 16#21004# UNDEFINABLE
o CP Instruction Fault 16#2200#
o0 Executive Mode Fault 16#2300#%
o IOC Instruction Fault 16424004
o IOC Protect Fault 1642500+
0 Executive Return 16#2600#%# UNDEFINABLE
o Overtemp address 164#2700#%
o CP Protect Fault 16#79004%
© Real-Time Clock 16 Z00# UNDEFINABLE
© Monitor Clock 16%.F00%# UNDEFINABLE

Table F-la - Interrupt Entry Addresses

F.8 Address Clauses

Ada/M PSE Handbook Versicn 3.5

29 March 199

+ ———
AN/UYK-44 Interrupt Summary
- s e = e - - - - - - - . . - -
| Class III interrupts (with interrupt entry address) include
G " ———— — - - - - " W= = A S S = —— - - - - —— - — -
© MMIO Discrete Interrupt 16#3C00#
O MMIO External Interrupt 1643D00#
© MMIO Output Data Ready 16#3E00#
¢ MMIO Input Data Ready l6#3F00#
0 IOC Intercomputer Timeout 16#3C00#
o IOC External Interrupt/Discrete 16#3D00#
o IOC Output Chain Interrupt 1643E00#
0 I0C Input Chain Interrupt 1643F00#

For all class III interrupts, the following interpretations

apply:

IC => IOC, CHANNEL pair, 16400#..l6#0F# indicates IOC 0 |
16#10#..16#1F# indicates IOC 1 ‘
16#20#4..164#2F#4 indicates IOC 2
16#304#..16#3F# indicates IOC 3

CC => CHANNEL number, 16#00#..16#3F# indicates channel 0..63

- - ————— " - - - - "~ — - -~ - - — - - - —— - - -

Table F-1b - Interrupt Entry Addresses (Continued)

ry

F.8 /ddress Clauses

version 3.5
29 March 1991

Ada/M PSE Hardbocoxk

| Class 0 interrupts (with interrupt entry address) include:
e e e - = e S D =S TP SR S G M M e = R D W T S S A D D D R D e - D WD -k D A W P - - -
; ¢ Class I Unhandled Interrupt 1640800#
e e mme
| Class I interrupts (with interrupt entry address) include:
P e e - - = = = - = ——— D = = = - ——— — ————— ——— " - = - = - — -
o0 Class II Unhandled 16#1800#
o CP Memcry Resume 16#1000#
o CP Memory Parity 16#1400#
o Thermal Overload 16#1900#
o IO Failure 16#1BO0#
o Hardware BIT Fault 164#1C00#
© Hardware Fault Warning 16#1D00#
0 Power Fault 16#1F00#
o e - - - - —— -~ - —— -
Class II interrupts (with interrupt entry address) include:
P s — - - - - ———— = — - - - - +
o0 Class III Unhandled 16#2800#
o Floating Point Over/Underflow 16#2100# UNDEFINABLE
o CP Instruction Fault 16#2200#
o Executive Mode Fault 16#2300#
o IOC Instruction Fault 164#2400#
o System Reset 16425004
o Executive Return 1642600#%# UNDEFINABLE
o Overtemp address 1642700%#
o CP Protect Fault 16#2900#
o Real-Time Clock 1642E004 UNDEFINABLE
o Monitor Clock 16#2F00# UNDEFINABLE
i e e = -~ = — - - +

Table F-lc - Interrupt Entry Addresses (Continued)

F-28 F.8 Address Clauses

Ada/M PSE Handbook Versizn 3.5
29 Marcn -.99.

- - - - - ———— ——— - D - —— - S e . D S G - —— . - —— . W W W W ———— e

| © I0 Channel Abnormal 164#3C00#
; 0 External Interrupt 16#3D00#
3 o Output Chain Interrupt 16435004
| o Input Chain Interrupt 164#3F00#

t For all class III interrupts, the following interpretacticn
apply:

IC => IOC, CHANNEL pair, 16#00#..16#0F# indicates IOC 0
16#10#..16#1F#% indicates IOC 1
16#20#..16#2F# indicates 10C 2
16#30#...6#3F# indicates IOC 3

CC => CHANNEL number, l16#00#..16#3F#% indicates channel 0..63

Table F-1d - Interrupt Entry Addresses (Continued)

m

F.8 Address Clauses -29

Version 3.5 Ada/M PSE Handbcox
29 March 1991

FP.9 Unchecked Conversions

Refer to Section 13.10.2 of the Ada Language Reference Manual
for a description of UNCHECKED _CONVERSION. It is erroneous if
your Ada program performs UNCHECKED_CONVERSION when the source
and target objects have different sizes.

F.10 Restrictions on the Main Subprogram

Refer to Section 10.1 (8) of the Ada Language Reference
Manual for a description of the main subprogram. The subprogram
designated as the main subprogram cannot have parameters. The
designation as the main subprogram of a subprogram whose
specification contains a formal_part results in a diagnostic of
severity ERROR at link time.

The main subprcgram can be a function, but the return value

will not be available upon completion of the main subprogram's
execution. The main subprogram may not be an import unit.

F-30 F.10 Restrictions on the Main Subprogram

Ada/M PSE Handbook Version 1.5

- e D
29 Marcn 1951

P.11 Input/Output

Refer to Section 14 of the Ada Language Reference Manual for
a discussion of Ada Input/Output and to Section 12 of the Ada/M
Run Time Environment Handbook for more specifics on the Ada/M
input/output subsystem.

The Ada/M Input/Output subsystem provides the following
packages: TEXT_IO, SEQUENTIAL_IO, DIRECT_IO, and LOW_LEVEL_ IO.
These packages “execute in the context of the user-written Ada
program task making the I/0 request. Consequently, all of z=ze
code that processes an I/0 request on behalf of the user-writc-en
Ada program executes sequentially. The package IO_EXCEPTIONS
defines all of the exceptions needed by the packages
SEQUENTIAL IO, DIRECT_IO, and TEXT_IO. The specification of :zhis
package is given in Section 14.5 of the Ada Language Reference
Manual. This package is visible to all of the constituent
packages of the Ada/M I/0 subsystem so that appropriate excepticn
handlers can be inserted.

I/0 in Ada/M is performed solely on external files. No
allowance is provided in the I/0O subsystem for memory resident
files (i.e., f£iles which do not reside on a peripheral device).
This is true even in the case of temporary files. With the
external files residing on the peripheral devices, Ada/M makes
the further restriction on the number of files that may be open
on an individual peripheral device.

Section 14.1 of the Ada Language Reference Manual states tha:
all I/0O operations are expressed as operations on objects of some
file type, rather than in terms of an external file. File
objects are implemented in Ada/M as access objects which point =o
a data structure called the File Control Block. This File
Control Block is defined internally to each of the high-level I/0
packages; its purpose is to represent an external file. The File
Control Block contains all of the I/O-specific information about
an external file needed by the high-level I/O packages to
accomplish requested I/0 operations.

F.11.1 Naming External FPiles

The naming conventions for external files in Ada/M are of
particular importance. All of the system-dependent information
needed by the I/0O subsystem about an external file is contained
in the file name. External files may be named using one of three
file naming conventions: standard, temporary, and user-derived.

=31

o)]

F.11.1] Naming External Files

Version 3.5 Ada/M PSE Hardbooxk
29 March 1991

F.11.1.1 Standard File Names

The standard external file naming convention used in Ada/M
identifies the specific location of the external file in terms cf
the physical device on which it is stored. For this reason, you
snould be aware of the configuration of the peripheral devices on
the AN/UYK-44 or AN/AYK-14 at your particular site.

Standard £ile names consist of a six character prefix and a
£ile name of up to fourteen characters. The six character prefix
has a predefined format. The first and second characters must be
either "CT," "MT," or "7TT," designating an AN/USH-26 Signal Data
Recorder/Reproducer Set, the RD-358 Magnetic Tape Subsystem, or
the AN/USQ-69 Data Terminal Set, respectively. These characters
must be in upper case.

The third and fourth characters specify the channel on which
the perlilpheral device is connected. Since there are sixty-four
channels on the Ada/M system, the values for the third and fourth
positions must lie in the range "00" to "63."

The range of values for the fifth position in the external
file name's prefix (the unit numper) depends upon the device
specified by the characters in the first and second positions of
the external file name. If the specified peripheral device is
the AN/USH-26 magnetic tape drive, the character in the fifth
position must be cne of the characters "0," "1," "2," or
"3." This value determines which of the four tape cartridge
units available on the AN/USH-26 is to be accessed. If the
specified peripheral device is the RD-358 magnetic tape drive,
the character in the fifth position must be one of the characters
“0," "1," "2," or "3." This value determines which of the four
tape units available on the RD~358 is to be accessed. If the
specified peripheral device is the AN/USQ-69 militarized display
terminal, the character in the fifth position must be a "0." The
AN/USQ-69 has only one unit on a channel.

The colon (:) is the only character allowed in the sixth
position. If any character other than the colon is in this
position, the file name will be considered non-standard and the
file will reside on the default device defined during the
elaboration of CONFIGURE_IO.

Positions seven through twenty are optional to your Ada
program and may be used as desired. These positions may contain
any printable character you choose in order to make the file name
more intelligible. Embedded blanks, however, are not allowed.

F=32 F.11.1.1 Standard File Names

Ada/M PSE Handpook Versicn 3.5

29 March 139

The location of an external file on a peripheral device is
thus a function of the first six characters of the file name
regardless of the characters that might follow. For example, :if
the external file "CT000:0ld_Data" has been created and not
subsequently closed, an attempt to create the external file
"CT000:New_Data" will cause the exception DEVICE_ERROR (racther
tnan NAME_ERROR or USE_ERROR) to be raised because the per.prera.l
device on channel "00" and cartridge "0" is already in use.

You are advised that any £file name beginning with "xxxxx:"
(where x denotes any printable character) is assumed =0 be a
standard external file name. If this external file name dces no:
conform to the Ada/M standard file naming conventions, the
exception NAME ERROR will be raised.

F.11.1.2 Temporary File Names

Section 14.2.1 of the Ada Language Reference Manual defines a
temporary file to be an external file that is not accessible
af-er completion c¢f the main subprogram. If the null string is
supplied for the external file name, the external file is
considered temporary. In this case, the high level I/0 packages
internally create an external file name to be used by the lower
level I/0 packages. The internal naming scheme used by the I/O
subsystem 1s a function of the type of file to be created (texc,
direct or sequential), the temporary nature of the external file,
and the number of requests made thus far for creating temporary
external files of the given type. This scheme is consistent with
the requirement specified in the Ada Language Reference Manual
that all external file names be unique.

The first three characters of the file name are "TEX," "DIR,"
or "SEQ." The next six characters are "_TEMP_." The remaining
characters are the image of an integer which denotes the number
of temporary files of the given type successfully created. There
are two types of temporary files; one is used by SEQUENTIAL_IO
and DIRECT_IO, and the other is used by TEXT_IO. For instance,
the temporary external file name "TEX_TEMP 10" would be the name
of the tenth temporary external file successfully created by your
Ada program through calls to TEXT_IO.

F.11.1.2 Temporary File Names F-33

Version 3.5 Ada/M PSE Handbook
29 March 1991

F.11.1.3 User-Derived File Names

A random string containing a sequence of characters of leng:th
one to twenty may also be used to name an external file.
External files with names of this nature are considered o be
permanent external files. VYou are cautioned from using names
which conform to the scheme used by the I/O subsystem to name
temporary external files (see list item "b").

It 1s nct possible to associate two or more internal files
with the same external file. The exception USE_ERROR will Dde
raised if this restriction is viclated.

F.11.2 The FORM Specification for External Files

Section 14.2.1 of the Ada Language Reference Manual defines a
string argument called the FORM, which supplies system-dependent
information that is sometimes required to correctly process a
request to create or open a file. In Ada/M, the strinec argument
supplied to the FORM parameter on calls o CREATE and OPEN is
retained while the file is open, so that calls to the function
FORM can return the string to your Ada program. Form options
specified on calis to CREATE have the effects stated below. Form
options specified on calls to OPEN have no effecct.

Thre REWIND and APPEND options are mutually exclusive; an
attempt to specify both options on a call to CREATE will raise
the exception USE_ERROR.

The NOHEAD option may be specified in combination with either
the REWIND or the APPEND option.

If one form option is specified, the FORM si.ing should
contain only the option, without any extraneous characters. If
two form options are specified, the FORM string should contain
the first form opticn followed by a comma followed by the second
form option. The form options may be specified in any
combination of upper and lower case.

If the supplied FORM string is longer than the maximum
allowed FORM string (13 characters), CREATE and OPEN will rai:e
the exception USE_ERROR.

If the procedure CREATE does not recognize the options
specified in the FORM string, it raises the exception USE_ERROR.
The procedure OPEN does no: validate the contents of :he supplied
FORM string.

F-34 F.11.2 The FORM Specification for External Files

Ada/M PSE Handbock versizcn 2.3
29 March 139

Positioning arguments allow control of tape before its use.
The following positicning arguments are available:

a. REWIND - specifies that a rewind will be performed pricr =o
the requested operation.

b. NOREWIND - specifies that the tape remains positicned as :.s.

c. APPEND - specifies that the tape be positioned at the _cc.zal
end of tape (LEOT) prior to the requested opcration. The
LEOT is dencted by two consecutive tape marks.

Note that, to ensure a tape file created by a previous
program is available for use by a new program, you must have
knowledge cf the tape being used and must use the APPEND form
option when creating new £files.

The formatting argument specifies information about tape
formaz. If a formatting argument is not supplied, the file :is
assumed to contain a format header record determined by the ALS/N
I/0 system. The following formatting arqument is available:

a. NOHEAD - specifies that the designated f£i’e has no header
record. This argument allows the reading and writing cf
tapes used cn computer systoms using different header
formats., Note that files created with the NOHEAD opticn
cannot be opened by the Ada/M I/0O subsystem.

",
!
(W)
[V}

F.11.2 The FORM Specification for External Files

vers

ion 3.5 Ada/M PSE Handbocxk

29 March 1991

F.ll

char
rest

a.

.3 File Processing

Processing allowed on Ada/M files is influenced by the
acteristics of the underlying device. The following
rictions apply:

Only cre £ile may be open on an individual AN/USH-26 tape
carcridge at a time.

Only one input and one output file may simultaneously be open
on an AN/USQ-69 terminal at one time.

An Ada program is erroneous if it does not close or delete

all files it creates or opens.

The attempt to CREATE a file with the mode IN _FILE is not
supported since there will be no data in the file to read.

F.11.3 File Processing

Ada/M PSE Handbook Version 3.5

29 Marcn 199:

F.11.4 Text Input/Output

TEXT_IO is invoked by your Ada program to perform sequertia.
access 170 operations on text files (i.e, files whose conternt :is
in human-readable form). TEXT_IO is not a generic package ang,
tnus, its subprograms may be invoked directly from your prograrm,
using objects with base type Or parent type in the
iarguage-defined type character. TEXT_IO also provides che
gerer:c packages INTEGER_IO, FLOAT_IO, FIXED_IO, and
ENUMERATION_IO £>r the reading and writing of numeric values and
enumeration values. The generic packages wizhin TEXT IO reguire
an instantiation for a given e.ement type before any of =reir
subprograms are invoked. The specification of this package :s
given In Section 14.3.10 of the Ada Language Reference Marua..

The implementation-defined type COUNT that appears in Sec-:ion
24.3.10 of the Ada Language Reference Manual is defined as
fclilows:

type COUNT is range 0..INTEGER'LAST;

The implementation-defined subtype FIELD that appears in Secticn
24.3..0 cf the Ada Language Reference Manual is defined as

Em 1

cCLL0OWSs:

subtype FIELD is INTEGER range 0..INTEGER'LAST;

At the beginning of program execution, the STANDARD INPUT
£ile and the STANDARD OUTPUT file are open, and associated with
the files specified by you at export time. Additionally, if a
program terminates before an open file is closed (except for
STANDARD INPUT and STANDARD OUTPUT), the last line added to the
£ile may be lost; if the file is on magnetic tape, the file
structure on the tape may be inccansistent.

A program is erroneous if concurrently executing tasks
attempt to perform overlapping GET and/or PUT operations on the
same terminal. The semantics of text layout as specified in the
Ada Language Reference Manual, Section 14.3.2, (especially the
concepts of current column number and current line) cannot be
guaranteed when GET operations are interweaved with PUT
operations. A program which relies on the semantics of text
ayout under those circumstances 1s erroneous.

For TEXT_IO processing, the line length can be no longer than
532 characters. An attempt to set the line length through
SET_LINE_LENGTH to a length greater than 532 will result in
USE_ERROR.

F.11.4 Text Input/Output F=-3

-

Version 3.5 Ada/M PSE Harcbnsoox
29 March 1991

F.11.5 Sequential Input/Oucput

SEQUENTIAL_ IO is invoked by your Ada program to perform I,/0
cn the records of a file in sequential order. The SEQUENTIAL 9
package also requires a generic instantiation for a given elemen-<
cype before any of its subprograms may be lnvoked. Once %the
package SEQUENTIAL IO is made visible, it will perform arny
service defined by the subprograms declared in its specificaticn.
The specification of this package is given in Secticn 14.2.3 of
che Ada Language Reference Manual.

The following restrictions are imposed on the use ¢cf the
package SEQUENTIAL_ IO:

a. SEQUENTIAL IO cannot be instantiated with an unconstrained
array type.

. SEQUENTIAL_IO cannot be instantiated with a record type wizh
discriminants with no default values.

c. Ada’M does not raise DATA _ERROR on a read operation if the
data input from the external file is not of the instantiating
type (see the Ada Language Reference Manual, Section 14.2.2).

F.11.6 Direct Input/Output

Calls to the subprograms of an instantiation of DIRECT_IO
have one of three possible outcomes. The exception USE_ERROR is
raised if an attempt is made to CREATE and/or OPEN a file since
direct access I/0 operations are not supported in Ada/M. The
exception STATUS_ERROR is raised on calls to subprograms other
than CREATE, OPEN, and IS_OPEN. The function IS_OPEN always

returns the value FALSE.

The implementation-defined type COUNT that appears in Section
14.2.5 of the Ada Language Reference Manual is defined as
follows:

type COUNT is range 0..LONG_INTEGER'LAST.

The following restrictions are imposed on the use of the
package DIRECT_IO:

a. DIRECT_IO cannot be instantiated with an unconstrained array
type.

o. DIRECT_IO cannot be instantiated with a record type with
discriminants with no default values.

F-38 F.11.6 Direct Input/Output

Ada/M PSE Handbook Version 2.5

29 March 1991

F.11l.7 Low Level Input/Output

LOW_LEVEL_IO is invoked by your Ada program to initiate
physxcal operations on peripheral devices, and -hus executes as
part of a program task. Requests made to LOW_LEVEL IO from your
program are passed through tne RTEXEC_GATEWAY to tne channel
programs in CHANNEL IO. Any status check or result informaticn
:s the 'esoonsxozl--y of the invoking subotogram and can be
cbtained from the subprogram RECEIVE_CONTROL within LOW_LEVEL IO.

The package LOW LEVEL IO allows your program to send I/0
commands to the ’/O “devices (using SEND_CONTROL) and to receive
status information from the I/0 devices (using RECEIVE CONTROL).
A program is erroneous if it uses LOW LEVEL IO to access a device
that is also accessed by high-level 1/0 packages such as
SEQUENTIAL IO and TZXT_IO. The following is excerpted from cthe
package LOW_LEVEL_IO.

-- IO CHANNEL RANGE is the type for the parameter DEVICE fcr
-- both SEND _CONTROL and RECEIVE_CONTROL. DEVICE identifies
-- which device to perform the operation for, and the charnrel
- number is a convenient means for identifying a device.
SUBTYPE io_channel_range IS integer RANGE 0..63;

-- Range of values allowed for channel number.

SUBTYPE buffer_address IS system.physical_address;
-- Type of variables used to specify
-- address of buffer for the I/0 operation.

SUBTYPE command_word IS long_integer RANGE 0..65535;
-- Data structures used in communication with the AN/USH-26.
ush26 _programs : CONSTANT := 3;
-~ Number of channel programs in CHANNEL_IO for
-- AN/USH-26 devices.
SUBTYPE ush26_operation IS integer

RANGE 0..low_level io.ush26_programs;
-- Indicates to CHANNEL_IO which channel program to use.

ush26_reset_channel : CONSTANT ush26_operation := 0;
ush26_read_data : CONSTANT ush26_operation := 1;
ush26_write data : CONSTANT ush26 operation := 2;
ush26_control : CONSTANT ush26_operation := 3;

F.11.7 Low Level Input/Output F-39

Version 3.5 Ada/M PSE Handbook
29 March 1991

TYPE ush26_data IS RECORD
-- Data passed to SEND_CONTROL for operations on
-~ AN/USH-26 devices.
operation : low _level 10.ush26 operation;
-- Kind of operation requested of LOW _LEVEL I0:
-- read data, write data, control, or initialize.
command : low_level io.command _word;
-- Command to send o the device.
data_liencth : integer range 0O..integer'last:;
-- Numper of words of data in the puffer.
buffer_addr : low_level io.buffer address,
-~ Physical address of data buffer.
END RECORD:

-- Data structures used in communication with the AN/USQ-69.

usg69 _programs : CONSTANT := 4§;
-- Number of channel programs in CHANNEL IO for
-- AN/USQ-69 devices.

SUBTYPE'usq69 ooeration IS integer
RANGE O .lcw_level 10.usg69 _programs;
-~ Indicates to CHANNEL I0 which channel program to use.

usg69 reset_charnel : CONSTANT usq69_operation := 0;
usg69_header : CONSTANT usqg69_operation := 1;
usg69 read _data : CONSTANT usg69 operation := 2;
qu69 write _data : CONSTANT usq69_operatlon = 33
qu69 eot : CONSTANT usg69_operation := 4;

TYPE usg69_data IS RECORD
-- Information needed to do I/0 to a AN/USQ-69 device.
operation : low_level in.usqg69_operation;
-- Kind of operation requested of LOW_LEVEL_IO:
-- read data, write data, control, or initialize.
command : low_level io.command_word;
-- Command to send to the device.
data_.2ngth : integer range 0..1nteger last;
-- Number of words of data in the buffer.
buffer addr : low level io.buffer address;
-- Physical address of data buffer.
END RECORD:

rd358 programs : CONSTANT := 3;
-- Number of channel programs in CHANNEL_IO for
-- RD-358 devices.

SUBTYPE rd358_operation IS integer
RANGE 0..low_level _io.rd358 programs;
-- Indicates to CHANNEL IO which channel program to use.

F-40 F.11.7 Low Level Input/Output

Ada/M PSE Handbook version 2.3

F.

- e
29 Marcn 139:

rd358_reset_channel : CONSTANT rd358 operation := 0;
rd358_read_data : CONSTANT rd358 operation := 1;
rd358_write_data : CONSTANT rd358 operation := 2;
rd358_control : CONSTANT rd358 operation := 3;

TYPE :d358_data IS RECORD
-- Information needed to do I/0 toc an RD- 358 device.
cperation : low_level i0.rd358 operation;
-- Kind of operat‘on “requested of LOW_LEVEL IO:
-- read data, write data, control, or Ln..la‘.za:i:n.
command : low level io.command word;
-- Command to send to the device.
data_length : integer range 0..integer'last;
-- Number of words of data in the buffer.
buffer_addr : low_level_ io.buffer address;
-- Physical address of data buffer.
END RECORD;

Types used for intercomputer I/0 operations.

ic_programs : CONSTANT := 10;
-=- Number of channel programs in CHANNEL_ IO for
-- AN/USH-26 devices.

SUBTYPE intercomputer operation IS integer
RANGE 0..low_level io.ic_programs;
-~ Indicates to CHANNEL I0 which channel program to use.

ic_reset_channel : CONSTANT intercomputer_operation := 0;
ic_read data : CONSTANT intercomputer_ operation := 1;
ic write data : CONSTANT intercomputer_operation := 2;
ic_control : CONSTANT intercomputer_operation := 3;

TYPE intercomputer_data IS RECORD
-- Informati.n needed to do I/0 to an intercomputer
-- channel.
operation : low_level io.intercomputer_operation;
-- Kind of operation requested of LOW_LEVEL_IO:
-- read data, write data, control, or initialization.
command : low_level jio.command_word;
-- Command to send to the other computer.
data_length : integer range 0..integer'last;
-- Number of words of data in the buffer.
buffer_addr : low_level io.buffer_address;
-- Physical address of data buffer.
END RECORD;

'
)
s

11.7 Low Level Input/Output

Version 3.5 Ada/M PSE Handbcex
29 March 1991

Data type identifiers for RECEIVE_CONTROL.

TYPE io_status_word IS NEW long_integer RANGE 0..65535;
-- Used to pass I/0 status word to RECEIVE _CONTROL.

SUBTYPE external interrupt_word IS
system.external_interrupt_word;

SEND_CONTROL is an overloaded Ada procedure which passes I/0
control information to a procedure in CHANNEL IO in order to
carry out a read, write, or control operation. In Ada/M,
there are four overloaded subprograms for SEND_CONTROL, one
for each of the following purposes

send data/command to an AN/USH-26 device,
send data/command to an AN/USQ-69 device,
send data/command to an RD-358 device,
send data/command to another computer.

The fcollowing versions of the overloaded procedure
SEND_CONTROL are used for sending data to specific types of
devices. The difference between the various forms of this
procedure lies in the DATA parameter, which is a record with
a field that specifies the control command to send to the
device. The data type of this £ield is different for each
type of device.

-- SEND_CONTROL for AN/USH-26 devices.
PROCEDURE SEND_CONTROL (

device : IN low_level io.io_channel range;
-- Channel number of the peripheral device.
data : IN OUT low level io.ush26 data

-- I/0 control information for AN/USH-26 devices.
)

-- SEND_CONTROL for AN/USQ-69 devices.
PROCEDURE SEND_CONTROL (
device : IN low_level io.io_channel_range;
Channel number of the peripheral device.
data : IN OUT low_level io.usq69_data
-- I/0 control information for AN/USQ-69 devices.

)

-- SEND_CONTROL for RD-358 devices.
PROCEDURE SEND CONTROL (

device : IN low_level io.io_channel_range;
-- Channel number of the peripheral device.
data : IN OUT low level i0.rd358 data

-- I/0 control information for AN/USQ-69 devices.
):

F-42 F.11.7 Low Level Input/Output

Ada/M PSE Handbook 4 Version 2.5

- e
29 Marcn 139!

-~ SEND_CONTROL for Intercomputer channel.
PROCEDURE SEND _CONTROL (

device : IN low_level io.io_channel range;
-- Channel number of the peripneral device.
data : IN OUT low_level io.intercomputer data

-- I/0 control information for AN/USQ-69 devices.
)i

-- RECEIVE _CONTROL is a procedure which passes I/0 contrcl

-- information to a procedure in CHANNEL IO in order to cbtain
-- the value for the input transfer count for the specified

== channel.

PROCEDURE RECEIVE_CONTROL (

device : IN low_level io.io_channel _range;
-- Device type for which status is requested.
data : IN OUT low_level io.io_status_word

-- External interrupt word for channel specified.
)

-~ RECEIVE_CONTROL for getting the external -nterrupt data
-- for the specified channel.
PROCEDURE RECVIVL_CONTROL (

device : IN low_level io.io_channel_range;
~- Channel number of the perzpheral device.
data : IN OUT low_level io.external interrupt_word

~-- Inpit count for channel specified.
)i

-- RECEIVE_CONTROL for getting input transfer count.
PROCEDURE RECEIVE _CONTROL (

device : IN low_level io.io_channel_range;
~- Channel number of the peripheral device.
data : IN OUT integer

~- Input count for channel specified.
):

F.12 System-Defined Exceptions
In addition to the exceptions defined in the Ada Language

Reference Manual, this implementation pre-defines the exceptions
shown in Table F~2 below.

F.12 System-Defined Exceptions F-43

Version 3.5 Ada/M PSE Handbook
29 March 1991

CAPACITY_ERROR Raised by the Run-Time Executive when
Pre-Runtime specified resource limits
are exceeded. !

SYSTEM_ERROR Serious error detected in underlying
AN/UYK-44 or AN/AYK-14 operating
system.

UNRESOLVED REFERENCE Attempted call to a subprogram whose

body is not linked into the executable
program image.

|
ACCESS_CHECK The ACCESS_CHECK exception has been f
raised explicitly within the program. ;
DISCRIMINANT_CHECK DISCRIMINANT CHECK exception has been E
raised explicitly within the program. %
DIVISION_CHECK The DIVISION_CHECK exception has been f
raised explicitly within the program. |
ELABORATION_CHECK The ELABORATION_CHECK exception has !
been raised explicitly within the
program.
INDEX_CHECK The INDEX_CHECK exception has been |

raised explicitly within the program.

LENGTH_CHECK The LENGTH_CHECK exception has been
raised explicitly within the program.

OVERFLOW_CHECK The OVERFLOW_CHECK exception has been
raised explicitly withia the program.

RANGE_CHECK The RANGE_CHECK exception has been
raised explicitly within the program.

Table F-2 - System Defined Exceptions

F-44 F.12 System-Defined Exceptions

Ada/M PSE Handbook version 3.5

29 March 139

F.13 Machine Code Insertions

The Ada language permits machine code insertions as def:ined
in Section 13.8 of the Ada Language Reference Manual. This
section describes the specific details for writing machine code
insertions as provided by the predefined package MACHINE CODEZ.

You may, if desired, include AN/UYK-44 or AN/AYK-14
instructions within an Ada program. This is done by inclidinz a
procedure in the preogram which contains only record aggrega:es
defining machine instructions. The package MACHINE CODE,
included in the system program library, contains type, recorgd,
and constant declarations which are used to form the
instructions. Each field of the aggregate contains a field c¢
the resulting machine instruction. These fields are specified :in
the order in which they appear in the actual instruction.

A procedure containing machine-code insertions looks similar
to this:

with machine_code; use machine_code;

procedure machine_samples is

begin
instr' (OPCODE,A,M,Y); -- first instruction
instr' (OPCODE,A,M,Y); =-- second instruction

instr' (OPCODE,A,M,Y); -- last instruction
end;

OPCODE, A, M, and Y in all these examples are replaced by the
actual opcode, A register, M register, and Y field desired for
each AN/UYK-44 or AN/AYK-14 instruction. Whenever possible,
MACRO/M mnemonics are used to specify the opcode field. The A
and M register fields are specified as RO, Rl, ... R1S5., The Y
field may be specified by any static expression which will fit in
a l6-bit integer. For certain instructions such as unary
arithmetic operations, the opcode and either the A or M register
determine which instruction is executed. The specification of
these instructions and certain others is somewhat more
complicated and is explained in detail below. Here are some
examples of possible MACRO/M instructions and the Ada/M record
aggregates that correspond to them:

MACRO/M Ada/M
spt ’ instr'(spt,A,M,Y);
lr instr'(lc,A,M);

instr' (mi,A,M);

A, Y, M
A,M
1 A, Y, M instr'(l,A,M,Y);
A,M
A,Y,M instr'(ork,A,M,Y);

[&]]
I
F &8
[V]]

F.13 Machine Code Insertions

Version 3.5 Ada/M PSE Handbcox
29 March 1991

In some cases, A or M register fields do not appear in the
MACRO/M instruction because the field is always zero in the
machine instruction. RO must be used in that field of the record
aggregate in Ada/M, however, since no missing fields are allowed.
Here are some examples where that occurs:

MACRO/M Ada/M

lpi M instr'(lpi,zc0,M); |
lp ¥ ,M instr'(lp,r0,M,Y);
sfsc M instr'(sfsc,r0,M);

Some MACRO/M mnemonics are ambiguous and are assembled into
one of two or more opcodes based on the operands specified in the
instruction. Ada/M opcode mnemonics must be unambiguous, so
either the letter K (indicating an RK format instruction) or the
lertter X (indicating an RX format instruction) has been added to
~he end of otherwise ambiguous mnemonics. Some examples of this
are as follows:

MACRO/M Ada/M
jz A,¥Y,M instr'(jzk,A,M,Y);
ip A,*Y,M instr'(jpx.A,M,Y);

For those MACRO/M mnemonics which determine both the opcode
and either the A or M register, the MACRO/M mnemonic
(disambiguated as above if necessary) is used for the A or M
field and an opcode mnemonic is invented. Some examples of this
are as follows:

MACRO/M Ada/M

pr A instr'(ua_opcode,A,pr);

drtr A instr'(ua_opcode,A,drtr);
sqr A instr'(us_opcode,A,sqr);

jne Y,M instr'(cjk_opcode, jnek,M,Y);
her instr'(ec_opcode, hcr,r0);

F-46 F.13 Machine Code Insertions

Ada/M PSE Handbook Versicn 3.5

29 March 199

You must be able to include data as well as instructions in
machine code. The MACHINE CODE package defines record types
which allow you to create indirect words, signed bytes, unsigned
bytes, words, double words, and flocating point numbers. The
format for including data is as follows:

Data Ada/M

indirect word (iw J,Y,X) indirect_word'(J,X,?):
unsigned byte (0 .. 255) unsigned_byte_value' (VALUE);
word (lé6-bit value) word value' (VALUE);

double word (32-bit value) double_word_value'(VALUE):
float value (32-bit value) float_value'(VALUE);

Table F-3 contains a list of MACRO/M instructions angd their
Ada/M machine code equivalents, sorted by MACRO/M mnemonic.

rry

F.13 Machine Code Insertions =47

Version 3.% Ada/M PSE Handbock
29 March 1991

P e e e - = e o o o -
| MACRO/M Ada/M
e e e e et mm e — e, e e e e m e e e e —m e ————————————— -
a A, Y, M instr'(a,a,M,Y;; !
acos A instr'(mf_opcode,A,acos);
acr M instr'(lpar,r0,M);
ad A,Y M instr'(ad,A,M,Y);
adi A, M instr'(adi,A,M);
adr A,M instr'(ad:-,A.M);
ai a,M instr'(ai,A,M);
ak A,Y,M instr'(ak,A,M,Y);
ald A,Y,M instr'(ald,A, M, Y);
aldr A,M instr'(aldr,A M); i
alog A irstr' (mf_opcode,A,alcq); I
als A, Y ,M instr'(als,A,M,Y);
alsr A,M instr'(alsr,A,M);
and A,Y,M instr'(and,A,M,Y):
andi A,M instr'(andi,A,M);
andk A,Y,M instr'(andk,A,M,Y);
andr A,M instr'(andr,A ,M);
ar A,M instr'(ar,A,M);
ard A, Y, M instr'(ard,A,M,Y);
ardr A ,M instr'(ardr,A,M);
ars A,Y,M instr'(ars,A,M,Y);
arsr A,M instr'(arsr,A,M);
asin A instr' (mf_opcode,A,2sin);
atan A instr'(mf_opcode,A,atan);
ba A,Y,M instr'(ba,A,/M,Y);
bc A,Y,M instr'(bc,A,M,Y);
bci A/M instr' (beci,A,M);
bcx A,¥Y,M instr'(bcx,A,M,Y);
bcxi A,M instr'(bcxi,A,M);
b ¥,M instr' (bf,z0,M,Y);
bEi M instr'(bfi,r0,M);
bl A,Y,M instr'(bl,A,M,Y);
bli A,M instr'(bli,A,M);
blx A,Y,M instr'(blx,A,M,Y);
blxi A,M instr'(blxi,A,M);
bs A,¥Y,M instr'(bs,A,M,Y);
bsi A,M instr'(bsi,A,M);
bsu A,¥Y,M instr'(bsu,A,M,Y);
bsx A,¥Y,M instr'(bsx,A,M,Y);
bsxi A,M instr'(bsxi,A,M);
built-in test - dec instr' (bit_opcode,dec);
built-in test - eec instr’'(bit_opcode,eec);
+ +

Table F-3a - Machine Code Instructions

F-48 F.13 Machine Code Insertions

Ada/M PSE Handbook

F.

13

Version 3.5
29 March 199}

P = = - - - —— - - — - - - - ————~ - - - -
| MACRO/M Ada/M
P e - — e — - m e ———————————————— - -
built-in test - icp instr'(bit opcode,icp);
built-in test - ids instr'(bit opcode,ids);
biilt-in test - imp instr' (bit opcode,imp);
built-in test - lrm instr'(bit opcode,lrm);
built-in test - rscs instr'(bit opcode,rscs);
built-in test - sel instr'(bit opcode,sel);
built-in test - srm instr'(bit_opcode,srm);
c A,Y,M instr'(c,A,M,Y):
cbr A,M instr'{cbr,A,M);
ccr A.M instr'(lpar,A,M);
cd A,Y M inscr'(cd,A ,M,Y);
cdi A,M instr'(cdi,A,M);
cdr A,M instr',.cdr,A,M);
ci A,M instr'(ci,A,M); j
ck A,Y,M instr'(ck.A,M,Y); ;
cl A,Y,M instr'(cl,a,M,Y); 2
cld aA,¥Y,M instr'(cld,A,M,Y); i
clér A,M instr'(cldr,A,M); |
cli A,M instr'(cli,A,M); !
clk A,Y,M instr'(clk,A,M,Y); |
clr A, M instr'(clr,A,M); |
cls A,Y,M instr'(cls,A,M,Y);
clsr A/M instr'(clsr,A,M);
cm A,Y M instr' (cm,A,M,Y);
cmi A,M instr'(cmi,A,M);
cmk A,Y,M inst. (cmk,A,M,Y); " :
cmr A, M instr'(cmr,A,M); ;
cnt A instr'(us_opcode,A,cnt); :
cos A instr' (mf_opcode,A,cos); |
cr A,M instr'(cr,A,M); |
d A, Y,M instr'(4,A,M,Y); |
data - double word double_word_value' (VALUE);
data - float float value' (VALUE):
data - signed byte signed_byte value'(VALUE);
data - unsigned byte unsigned_byte_value'(VALUE);
data - word word_value' (VALUE):
decir instr'(uc_opcode,r0,dcir);
decr instr' (uc_opcede,r0,dcr);
dd A,Y,M ingtr'(dd,A,M,Y); i
ddi A,M irstr'(ddi,A,M); f
ddr A, M instr'(ddr,A,M); ‘
di A,M instr'(di,A,M); g
dk A,Y,M instr'(d%,A,M,Y); !
- - - W == D - - — - - - - - —— -

Table F-3b - Machine Code Ins:cructions (Continued)

Machine Code Inser:ions

Version 3.5 Ada/M PSE Hancdbocxk
29 March 1991

D et D bl et DU, +
| MACRO/M Ada/M ;
o o - > - - —_——— = — - - . - - +

dm instr' (uc_opcode,r0,dm); i

dr A, M instr'(dr,A,M); |

dror A instr' (ua_opcode,A,dror); i

drtr A instr'(ua_opcode,A,drzr); |

ecir instr'(uc_opcode,r0,ecir);

ecr instr'(uc_opcode,r0,ecr);

er A instr'(uc_opcode,A,er);

exp A instr'(mf_opcode,A,exp):

fa A, Y ,M instr'(fa,A,M,Y);

fai A,M instr'(fai,A,M);

far A,M instr'(far,A,M);

£c A,Y instr' (mp opcode,A,fc);

word_value'(Y);

fd A, Y, M instr'(£4,A,M,Y);

£4di a,M instr' (£4i,A,M);

€dr A M instr' (fdr,A,M);

flc A instr'(mp_opcode,A,flc);

£lcd A instr' (mp_opcode,A,flcd);

fm A,Y,M instr' (fm,A,M,Y);

fmi A,M instr'(fmi,A,M);

fmr A,M instr' (fmr,A,M);

£su A,Y,M instr'(fSUrAlM'Y);

fsui A,M instr'(£fsui,A,M);

fsur a,M instr'(fsur,a,M);

fxc a instr' (mp_opcode,A,fxc);

fxcd A instr' (mp_opcode,A, fxcd);

ib A instr'(us_opcode,A,ib);

ick A,Y instr'(e6_opcode,A,ick,Y);

ioc A,Y,M instr'(ioCr,A,M);

word_value'(Y);

iocr instr'(iocr,z0,10);

iror A instr'(ua_opcode,A,iror);

irtr A instr’'(ua_opcode,A,irtr);

is A instr'(us_opcode,A,is);

iw Y,Y,X indirect word'(J,X,¥Y);

j *Y,M instr'(cjx_opcode, jx,M);

j Y,.M instr'(cjk_opcode, jk,M);

jb *Y,M instr'(cjx_opcode, jbx,M);

jb ¥,M instr'(cjk_opcode, jbk,M);

jbr M instr'(cjr_opcode, jbr,M);

je *Y,M instr'(cjx_opcode, jcx,M);

jc Y, M instr'{cjk_opcode, jck,M);

jcr M instr'(cjr_opcode, jcr,M);

je *Y,M instr'(cjx_opcode, jex,M);

je Y, M instc' (cjk_opcode, jek M) ;
e e e e - = = = o = = o o = e = - +

Table F-3c - Machine Code Instructions (Continued)

F-50 F.13 Machine Code Insertions

Ada/M PSE Handbook

F.1l3

jnr A,M
jnz A,*Y,M
jnz A,¥Y,M
jnzr A,M
jo *Y,M
jo ¥,M
jor M

jp A,*Y ,M
jp A,Y /M
jpr A/M
jpt *Y,M
jptr M

jr M

js *Y,M
js ¥,M
jsr M

jz A,*Y,M
jz A, Y, M
j2r A,M

Machine Code Insertions

D - > . . —— . D D D - — - — - ———— - ——

Version 3.5
29 March 1991

instr'(cjr_opcode, jer,M); |

instr'(cjx_opcode, jgex,M);
instr'(cjk_opcode, jgek,M);

instr'(cjr_opcode, jger,M):
instr'(cjx_opcode, jksxl ,M);
instr'(cjk_opcode, jkskl,M);
instr'(cjx_opcode, jksx2,M);
instr'(cjk_opcode, jksk2,M);
instr'(cjr_opcode, jksrl,M);
instr'(cjr opcode, jksr2,M);

instr'(jlmx,r0,M,Y)
instr'(jlmk,z0,M,Y)
instr'(jlrx,A,M,Y);
instr'(jlrk,A,M,Y);
instr'(jlirr,A,M);

instr'(cjx_opcode,jlsx,M);
instr'(cjk_opcode, jlsk,M);
instr'(cjr opcode, jlsr,M);

instr'(jnx,A,M,Y);
instr'(jnk,A,M,Y);

instr'(cjx_opcode, jnex,M);
instr'(cjk_opcode, jnek,M);
instr'(cjr_opcode, jner ,M);

instr'(jnr,A,M);
instr'(jnzx,A,M,Y)
instr'(jnzk,A,M,Y)
instr'(jnzr,A,M);

.
,
.
’

instr'(cjx_opcode, jox,M);
instr'(cjk_opcode, jok,M);
instr'(cjr_opcode, jor,M);

instr' (jpx,A,M,Y);
instr'(jpk,A,M,Y);
ingtr'(jpr,A,M);

instr' (cjx_opcode, jptx,M);
instr'(cjk_opcode, jptk, M);
instr'(cjr_opcode, jptr,M);
instr'(cjr_opcode, jr,M);

instr'(cjx_opcode, jsx,M);
instr'(cjk_opcode, jsk,M);
instr'(cjr_opcode, jsr,M);

instr'(jzx,A,M,Y);
instr'(jzk,A,M,Y);
instr'(jzr,A,M);

.
’

-
’

Table F-3d - Machine Code Instructions (Continued)

Version 3.5
29 March 1991

Ada/M PSE Handbook

MACRO/M Ada/M
1 A,Y,M instr'(l1,A,M,Y);
la A,M instr'(la,A,M);
lad aA/M instr'(lad,aA,M);
lald A, M instr'(lald,A,M);
lals A, M instr'(lals,a,M);
lard A,M instr'(lard,a,M);
lari A,M instr'(lari,A,.M);
larm A,¥Y,M instr'(larm,A,M,¥Y);
larr A,M instr'(larr,A,M);
lars aA,M instr'(lars,A,M);
lbxi A,Y,M instr'(lbxi,A,M,Y);
lc A,M instr'(lec,A,M);
lcep A instr'(us_opcode,A,lcep);
lclc A M instr'(lclec,A,M);
lcld A,M instr'(lclc,A,M);
lcr A instr'(uc_opcode,A,lcr);
lcrd A instr'(uc_opcode,A,lcrd);
1d A,Y M instr'(14,A,Y ,M);
1di aA,M instr'(1di,A,M);
1div A,M instr'(ldiv,a,M);
1dx A,Y M instr'(1ldx,A,M,Y);
1dxi A,M instr'{1ldxi,A,M);
lem A instr'(uc_opcode,A,lem);
1i A,M instr'(li,A,M);
lir A,M instr'(lir,A,M);
13 D instr'(13,D);
lje D instr'(lje,D);
ljge D instr'(ljge,D);
13i D instr'(13i,D);
1jlm D instr'(1ljlm,D);
1jls D instr'(ljls,D);
ljne D instr'(ljne,D):;
1k A, Y ,M instr'(lk,A,M,Y);
11 A,M instr'(11,A,M);
llrd A M instr'(1llrd,A,M);
llrs A,M instr'(llrs,A,M);
lm A,Y,M instr'(1lm,A,M,Y);
lmap A,Y,M instr'(1lmap,A,M,Y);
lmr A,Y,M instr'(lmr,A,M,Y);
lmul A, M instr'(lmul,A,M);
lp Y, M instr'(lp,r0,M,Y);
lpa A,Y,M instr'(lpa,A,M,Y);
lpai A, M instr'(lpai,A,M);
P e e e e e e o e Y s = - - —— +

Table F-3e - Machine Code Instructions (Continued)

F-52 F.13 Machine Code Inserrions

Ada/M PSE Handbook

Version 3.5
29 March 1991

MACRO/M Ada/M i
——— +
lpak A,Y,M instr'(lpak,A,M,Y); I
lpar A, M instr'(lpar,A,M); 1
lpi M instr'(lpi,r0,M); ;
lpl A,Y,M instr'(lpl,A,M,Y); i
1pli A,M instr'(1lpli,A,M); i
lpr A instr'(uc_opcode,A,lpr); {
ir A,M instr'(lr,A,M); i
1rd A,Y,M instr'(1lrd,A,M,Y); E
lrdr A, M instr'(lrdr,A,M); ;
lrs A, Y ,M instr'(lrs,A,M,Y); i
lrsr A,M instr'(lrsr,A,M); :
lsor A instr' (uc_opcode,A,lsor); §
lstr A instr'(uc_opcode,A,lstr); ‘
lsu A,M instr'(1lsu,A,M);
l1sud A, M instr'(1lsud,A,M);
1x A,Y,M instr'(1lx,A,M,Y);
1xi A,M instr'(1lxi,A,M);
mA,Y,M inscr' (m,A,M,Y);
mb A, M instr' (mb,A,M);
mdi A, M instr'(mdi,A,M);
mdm A,Y,M instr' (mdm,A,M,Y);
mdr A,M instr' (mdr,A,M);
mi A,M instr' (mi,A,M); i
mk A,Y,M instr'(mk,A,M,Y);
mr A,M instr'(mr,A,M);
ms A,Y,M instr'(ms,A,M,Y);
msi A,M instr' (msi,A,M);
msk A,Y,M instr' (msk,A,M,Y);
msr A,M instr' (msr,A,M);
nf A instr' (mp_opcode,A,nf);
nr A instr'(ua_opcode,A,nr);
ock A,Y instr'(e6_opcode,A,0ck,V);
ocr A instr'(ua_opcode,A,ocr);
or A,Y,M ingstr'(or,A,M,Y);
ori A,M instr'(ori,A,M);
ork A,Y,M instr'(ork,A,M,Y);
orr A,M instr'(orr,A,M);
pr A instr'(ua_opcode,A,pr);
gal A,Y instr'(mp_opcode,A,qal);
word_value'(Y);
gar A,Y instr' (mp_opcode,A,qar);
word_value'(Y);
qgt A,Y,M instr'(qgt,A,M,Y);
qpb A,Y,M instr'(qpb,A,M.Y);
P e - - S = " = - D . - . = - . - — +

Table F-3f - Machine Code Instructions (Continued)

F.13 Machine Code Insertions F-33

Version 3.5 Ada/M PSE Handb
29 March 1991 oK

P e e e e, e e e e mr e e r— e ac — e e e a————— +
| MACRO/M Ada/M
o e P T = e - = - +
gpt A,Y,M instr' (gpt,A,M,Y);
rex Y,M instr'(rex,r0,M,Y);
rf A instr' (mp_opcode,A,rf);
rfp A instr' (mp opcode,A rfp);
rh A instr'(mp_opcode,A,rh);
rhp A instr'(mp_opcode,A,rhp);
rim A,¥Y,M instr' (smap,A,M,Y);
rr A instr'(ua_opcode,A,rr);
rvr A instr’' (us opcode,A rvr);
S A,Y M instr' (s, A, M,Y);
sari A,M instr'(sari,A,M);
sarm A,¥Y,M instr'(sarm,A,M,Y);
sarr A,M instr'(sarr,A,M);
sbr A,M instr'(sbr,A,M);
sbxi A,Y,M instr'(sbxi,A,M,Y);
scr A instr'(uc_opcode,A,scr);
scrd A instr'(uc opcode, (sScrd);
sd A,Y,M instr'(sd,A,M,Y);
sdi A,M instr'(sdi,A,M);
sdx A,Y,M instr'(sdx,A,M,Y);
sdxi A,M instr'(sdxi,A,M);
sedr A,M instr'(sedr,A,M);
ser A,M instr'(ser,A,M);
sfr A instr'(us opcode A,sfr);
sgt A,Y,M instr'(sgt,A,M,Y):
si A,M instr'(si,A,M);
sin A instr'(mf opcode A,sin);
sir A/M instr'(sirt,A,M);
sm A,{,M instr'(sm,A,M,Y);
smap A,Y,M instr'(smap,A,M,Y);
smc A instr'(us_opcode,A,smc);
smr A,Y,M instr'(smr,A,M,Y);
spl A,¥,M instr'(spl,A,M,Y);
spli A,M instt'(spli,A,M);
spt A,Y,M instr' (spt,A,M,Y);
sqgr A instr'(us_opcode,A,sqr);
sqrt A instr'(us_opcode,A,sqrt);
ssor A instr' (uc opcode A,ssor);
sstr A instr’ (uc opcode.A sstr):
su A,Y,M instr'(su,A,M,Y);
sud A,¥Y,M instr'(sud,A,M,Y);
sudi A,M instr’'(sudi,A,M);
sudr A.M instr’'(sudr,A,M);
P e e e e e e - - - - - - +

Table F-3g - Machine Code (nstructions (Continued)

F-54 F.13 Machine Code Insertions

Ada/M PSE Handbook Version 3.5
29 March 1991

Prmm e e ccc e mr e c e e r e m e e e c e e e c e cc— e e —————————— +
| MACRO/M Ada/M |
 bmmm— e e e e cc e e e memm e — e r e e s ee s~ e — et —c———————— -
sui A,M instr'(sui,a,M); i
suk A,Y,M instr'(suk,A,M,Y); 1
sur A,M instr'(sur,A,M); ;
sx A,Y,M instr'(sx,A,M,Y); |
sxi A,M instr'(sxi,A,M);
sz Y, M instr'(sz,r0,M,Y);
szi M instr'(szi,c0,M); :
tan A instr' (mf_opcode,A,tan); *
tedr A instr'(ua_opcode,A,tcdr); 3
tcr A instr'(ua_opcode,A,tcr;;
vE A instr' (mp_opcode,A,vf); |
vip A instr' (mp_opcode,A,vfp); |
vh A instr' (mp_opcode,A,vh); I
vhp A instr'(mp_opcode,A,vhp); |
wem A, Y, M instr'(lmap,A,M,Y); |
wemk AM, Y instr'(e6_opcode,A,M,Y); l
wim A,Y,M instr'(lmap,A,M,Y); ;
wimk A,Y,M instr'(e6_opcode,A,M,Y); i
xj A,*Y,M instr'(xjx,A,M,¥);
xj A,Y,M instr'(xjk,A,M,Y);
xjr A,M instr'(xjr,A,M);
xor A,Y,M instr'(xor,A,M,Y); i
xori A,M instr'(xori,A,M); ;
xork A,Y,M instr'(xork,A,M,Y); :
xorr A,M instr' (xorr,A,M); ;
xsdi A,M instr' (xsdi,A,M); ’
xsi A,M instr'(xsi,A,M);
zbr A/M instr'(zbr,A,M); ’
e e > - - - - - +

Table F-3h - Machine Code Instructions (Continued)

F.13 Machine Code Insertions F-55

